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CHAPTER 1

WARRANTY POLICIES

1.1. Introduction

A warranty is a contractual obligation incurred by a

manufacturer or vendor in connection with the sale of an item or

service. The warranty specifies that the manufacturer agrees to

remedy certain defects or failures in the commodity sold. The purpose

of the warranty is to promote sales by assuring the quality of the

item or service to the customer.

There are many different types of warranties but most seem to

fall into one of two categories as defined by the Federal Trade

Commission. These two categories are the "full warranty" and the

"limited warranty". A full warranty specifies that the product must

be repaired or replaced within a reasonable time at no charge to the

consumer. In a limited warranty the consumer is frequently expected

to pay at least a portion of the cost of repairing or replacing the

product.

In planning a warranty policy many factors must be taken into

consideration. These factors range from the consumers' typical

psychological perception that a longer warranty implies a "better"

* product, to the quantitative analyses that show an additional non-

negative cost is incurred (by the manufacturer) whenever a warranty is

offered. Increasing consumer awareness (of the value of warranties)
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will inevitably be another factor in the managerial decision of

choosing the type and length of warranty to offer. This advance in

"consumerism" will require increasing attention on the part of manufac-

turers wishing to improve or even maintain their competitive positions.

This study considers most of the more common warranty policies

(both stated and unstated) from both the consumer's point of view and

from the manufacturer's point of view. It is assumed throughout that

all costs are positive, all repairs are instantaneous, and all item

lifelengths are nonzero.

1.2. Full-Warranty Policies

Perhaps the most common warranty policy is the simple fixed-time

warranty, (henceforth referred to as the standard warranty policy).

In this policy, anytime the purchased item fails before time W, the

warranty length, the item is either repaired or replaced free of charge.

If the new or repaired item also fails within the warranty period it

too is repaired or replaced free of charge. This continues until time

- W after which the consumer must pay the full cost of either repairing

or replacing the item. In this policy the consumer is effectively

guaranteed that for the original price of the item he will have a

functioning item for at least a time period of length W.

A second common warranty policy is the renewing warranty policy.

It is frequently offered by the manufacturers of small mechanical and

electrical appliances. This is often an unstated policy that works as

follows:
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For the fixed price P, the consumer buys an item with warranty

length W. This warranty is identical to the one previously discussed

except that when the item fails (within the warranty period W) the

manufacturer not only repairs or replaces the item free of charge, but

also gives the consumer a new warranty of length W that supercedes

the old warranty. In this way the consumer is guaranteed that for the

price of the original item he will receive new or repaired items free

of charge until one of the items functions for a time period longer than

W.

It is clear that this policy is more expensive from the manu-

facturers'point of view than the original policy. The way this policy

actually arises is typified by the following example.

A consumer purchases a clock-radio from his local Jarco Store.

This clock-radio comes with the standard one year warranty (i.e.,

if it fails within the first year of purchase, bring it back to Jarco

and Jarco will repair or replace it free of charge). However, when

the clock radio actually fails in 6 months and the consumer returns it

* to Jarco, rather than going through the complicated process of trying

to repair the item, Jarco simply gives the customer a new box which

contains a new clock-radio and also includes a new one year warranty.

The two policies above immediately suggest at least two

generalizations. The first (Bell - 1961, [3]) is not very useful from

a manufacturers' point of view because of the additional paper work

required. According to this generalization, if an item is guaranteed

for a period of time W and fails at time x < W, it is replaced free

-3-



of charge and the guarantee is extended for a period kx, 0 < k < 1.

The case k - 0 is the standard policy and the k - 1 case is the

renewing warranty policy.

The second generalization, the (T,W) warranty policy, is

one that is currently being used by some manufacturers of small

appliances. In this warranty policy the initial item is given a fixed

warranty of length W. If the item fails before time W - T,

0 < T < W, the item is repaired or replaced and the warranty continues

unchanged. If the item fails after time W - T but before time W,

the item is repaired or replaced and a new warranty of length T is

issued.

An equivalent formulation is as follows: If the item fails at

time x < W, the item is repaired or replaced and a new warranty of

length

max (T, W - x)

is issued. The policies T = 0 and T - W correspond with the

standard and renewing warranty policies respectively.

This policy requires very little additional work for the

manufacturer since all he needs to do is give a fixed length warranty

of length T with any repaired or replaced item (under any warranty).

It is up to the consumer to decide whether or not the original warranty

is better or worse than the new warranty.

-4-
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1.3. Limited Warranty Policies

The typical limited warranty is the pro rata warranty. It is

found most often when vurchasing automobile tires, although lately its

popularity has begun to spread to other sectors of transportation. Under

the pro rata warranty, if an item fails at time x, x < W, then the item

is replaced (typically replaced, not repaired), the warranty is renewed,

and the customer is charged a fraction x/W of the price of the item.

W is the length of the pro rata warranty. The idea behind the pro rata

warranty, from the manufacturer's point of view, is simple. Why should

the consumer get all that free use out of the item? Thus, the manufac-

turer "charges" the customer pro rata (from the Latin word for propor-

tional).

Two generalizations of the pro rata warianty have appeared recently

on the market. The first of these (Heschel - 1971, [13]) is a pro rata

policy with delay. If an item under warranty fails before time s a new

item is issued and the warranty is renewed at no charge to the consumer.

If the item fails at time x, where s < x < W, a new item is issued,

the warranty is renewed, and the customer is charged a fraction

x/W-s - s/W-s of the price of the item. x is the failure time of the

item, s < x < W, and W is the warranty length. If the item fails after

time W the consumer is charged the full price of a new item. The case

s - 0 corresponds to the original pro rata warranty and the case s = W

corresponds to the free replacement renewing warranty policy.

The second pro rata generalization, pro rata with rebate, charges

the regular pro rata price from time s on. As before, if the item fails
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before s, 0 < s < W, a new item is issued and a new warranty is given

at no charge to the consumer. After time s but before time W, a

new item is issued and the warranty is renewed but the consumer is now

charged the fraction x/W of the original price. x is once again the

failure time of the item and W is the warranty length. This

generalization has the same endpoints as the last. If s = 0, it is

the original pro rata policy and if s = W, it is the free replacement

policy. These three policies are represented graphically below in

Figure 1.

cost to
customer

c 0

0

s W failure time

Figure 1.1

Comparison of Pro Rata Warranties

-6-
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As one can readily see, the second generalization is always superior

to the first from the manufacturer's point of view since it always

generates at least as much income. This, combined with the fact that

from a marketing point of view both generalizations are typically per-

ceived as equivalent (by the average consumer), has led to the almost

total abandonment of the first generalization.

Other formulations of generalized warranty policies are, of

course, possible. As an example of one that is perhaps too complicated

to be used by a manufacturer, one could add an additional kI x,

0 < kI ! 1 to the warranty period length if the failure time

x E [s1 , W1, and charge the consumer a fraction x/W-s - s2/W-s
2 2 2

if x E Cs2, W], (something else otherwise) of the price of the item.

The choice of policy and the selection of the warranty length

will depend on production costs, sales price, demand, and distribution

of time of failure for both new and repaired items. It will also be

different depending upon whether the problem is considered from the

point of view of the consumer or the manufacturer.

1.4. History of Warranty Studies

In the last 30 years over 130 articles and technical reports

dealing with warranties have been published. The subjects of these

articles have varied from advertising to urban transportation and have

been published in everything from the Congressional Record to Business

Week to the Proceedings of the Reliability and Maintainability

Symposiums.
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Blischke and Scheuer have done an excellent job of tracking

down these sources and compiling them in a single bibliography [7].

They have also classified each of the articles into one or more of

eight catagories: structural aspects of warranties, analysis of

management decisions with respect to warranties, economic analysis

of warranties, related business activities, consumerism, statistical

analysis of warranties, legal aspects and miscellaneous. Of the

categories pertinent to this study the most important by far is the

statistical analysis of warranties. However, the nature of the study

also requires consideration of the structural aspects of warranty

policies, the analysis of management decisions with respect to

warranties and finally, the economic analysis of warranties (along

with its supply and demand functions).

The first paper, historically speaking, to deal with warranties

from a mathematical or statistical point of view was a Ph.D. dissertation

(also published as a technical report) by Lloyd Bell at Stanford University

in 1961 [3]. In this dissertation Bell assumes a particular type of

demand function and derives conditions under which certain types of

warranty policies are optimal. He also includes a short section

entitled, "Expected Rate of Profit Per Customer" in which he develops

a renewal equation of use in finding "the expected rate of overall profit",

a value he wishes to maximize. However, he stops short of solving the

* renewal equation and instead concentrates on demand functions and their

effect on various warranty policies.
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No further work relating renewal equations to warranty policies

seems to have been done until 1971 when M. S. Heschel published a two-

page article entitled "How Much is a Guarantee Worth" [13]. Although

Heschel neither explicity mentions nor uses renewal equations in his

article he does use the concept of expected cost which ties directly

to renewal theory.

Four years later in 1975, Blischke and Scheuer published the

first of several papers using renewal theory to analyze both the standard

warranty policy (see Section 1.3) and the pro rata warranty policy

[4, 5, 6]. In these papers they laid most of the groundwork for

comparing different warranty policies from both the consumer and

manufacturers' point of view. They, however, stopped short of calculating

the actual cost at which the consumer would be indifferent between

purchasing an item with a particular warranty as opposed to an item

without warranty; instead they estimated these values.

Many other authors have done mathematical studies of warranty

policies without the use of renewal theory. Most of these deal with

demand functions and market places. Glickman and Berger, for instance,

consider displaced log linear demand functions and do a sensitivity

analysis of the elasticity assumptions [12]. Other more recent papers

have dealt with such topics as incentive contracts (Marshall, 1980 [16])

and imperfect information and alternative market structures (Courville

and Hausman, 1979 [9]). These subjects will not be addressed in this

study.

-9-
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CHAPTER 2

BACKGROUND

2.1. Derivation of the Renewal Equation

If a single customer uses a product for a long period of

time and replaces each item immediately upon failure, a renewal sequence

is generated. This renewal sequence can then be used to develop many

values of interest.

Consider a sequence of items issued at times 0, t1 , t2, ...,

tn' .. (0 < t1 < t2 < -.. < tn < ...) with corresponding lifetimes

X1, x2, x3, ... such that tI = X1, t2 = x + x2 , ... , = I n xi .

The {x i } are assumed to be independent identically distributed random

variables with distribution function F(t), where F(O) = 0. They

represent the life length of the various items with xi being the life

length of item i. If we let N(t) be the number of items issued up

to time t, (not counting the item issued at time 0) i.e.,

N(t) = n : tn_ < t < tn

then N(t) is a renewal process.

Many values of interest can be found by taking advantage of the

fact that N(t) is a renewal process. In the discussion that follows

Y(-) may be interpreted as a cost function and R(.) would, therefore,

represent cumulative costs. Other interpretations of Y(.) and R(.)

will be examined at the end of this section.
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Let Y(.) be an arbitrary function mapping N - R and define

YJ Y(x). The {Y } thus form a sequence of independent identically

distributed random variables such that Y and xk are independent

for all j j k. If we let the sequence fY I occur at times {t),

respectively, then we have a sequence of values each occurring at the

time of issuance of a new item, such that each value, Yi, is dependent

only upon the life length of the previous item, xj.

If R (T) is the sum of all values Y obtained during a time
i k

period of length T starting at ti, and N > i is determined by

tN < ti + T < tN+l, then

$0 N = i (or xi > T)NRi(T)<=

Y i+l + Yi+2 +  + YN N > i (xi < T)

Note that Ri(T) Y + R i+(T - xi+l) for xi+ I < T. Thus,

E= iR(T)Ix.+ = E(Y i+ul = u) + E[Ri+ (T-xi+llXi+l iu) u < T

0 u>T

= E(Yi+i Xi+l = u) + E(R i+(T-u)) u < T

0 u > T•

Removing the dependence on u yields

T T
E[Ri(T)1 = f E(Yi+llxi+I  u) dF(u) + f E(Ri+(T-u)) dF(u)

0 0
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Let V i+l(T) be defined by

T
Vi+l(T) f E(Yi+iIxi+i = u) dF(u)

0

Since the quantities V i+(T) and E(R i+(T-u)) are not dependent

on i, the subscript can be dropped yielding

T
E(R(T)) - V(T) + f E(R(T-u)) dF(u) (1)

0

This is the generalized renewal equation discussed in Karlin and

Taylor [15]. If V(T) is a bounded function, then there exists one

and only one function E(R(T)) bounded on finite intervals satisfying

(1). This function is

T

E(R(T)) = V(T) + f V(T-u) dM(u)
0

where M(u) = Li F(u) = E(N(u)) and F (M is the i-fold

convolution of F with itself.

A value of interest is

lrm E(R(t))
t-*w t

the expected "value per unit time" of the system. To calculate this

the following well known lemma (Karlin & Taylor, Chapter 5 (15]) is

necessary:
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Lemma 2.1. (Blackwell's Theorem) Let F be the distribution function

of a positive random variable with mean P. If F is not arithmetic

then lim M(t+h) - M(t) - h/u.
t-+W

Theorem 2.2. If R(t) solves the renewal equation

t
R(t) V(t) + f R(t-u) dF(u),

0

where V(t) is a bounded nondecreasing function, then lim k(t) _ V
t 1

where V = lim V(t) and P < - is the mean of F(u).

t
Proof: By the generalized renewal theorem k(t) = V(t) + f V(t-u) dM(u).

0
Thus,

t

lim R(t) - lim V(t) + lim ft V(t-u) dM(u).t tI
t-*0-* t t - 0

By hypothesis V(t) is bounded so lim V(t)/t 0. Moreover,

since V(t) is nondecreasing and tending to V for all e > 0,

there exists a T such that V - V(t) < c for all t > T.

Splitting the integral into two pieces yields

tt-T t~ I

fVt t V(t-u) dM(u) + f V(t-u) dM(u)IV(t-u) dM(u) = j 0 -

K 0 t0 t -T :
Note that

-13-
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* t

0 < f V(t-u) dM'')< dM(u) V -[M(t) -M(t-T)J
<- t-T -t t-T

and by the previous leuna

V V T
lrn - [M(t) - M(t-T)J - lrn - 0

Thus, the second piece of the integral tends to zero. The remaining

piece is

If tTV(t-u) dM(u)
t0

Recall, however, that t - u CE[T,t] which means V -< V(t-u) < V

and

(V-)M(t-T) < f V(t-u) dM(u) <-M(t-T)
tt0 t

Taking limits on both sides:

urn f - V(t-u) dM(u) =V0

t0

The above theorem was first proved in 1963 by Johns and Miller [141.

The proof included here is considerably different than the original.

Another interesting result occurs if Y(x) is constant for all x.

-14-



Theorem 2.3. If Y(x) = c0  then E(R(t)) = c0M(t).

Proof: If Y(x) = c0  then

t t
Vi(t) = f E(YiLxi = u) dF(u) - c o f dF(u) - c o F(t)

0 0

Plugging into the formula for E(R(t)),

t

E(R(t)) c 0 F(t) + c0 f F(t-u) dM(u)
0

C 0 [F(t) + F * M(t)]

- coM(t)

where F * M(t) is the convolution of F(t) and M(t). The last step

is a direct result of the fact that

" M(t) F Fi(t) = F(t) + F Fil(t).

i=l i~l

It should be noted further that if Yi = C0  then V(t) = c0F(t)

satisfies the hypothesis of Theorem 2.2, i.e., V(t) is a bounded non-

decreasing function and, thus, lim R(t) . '_
t V

Many useful results can be derived from the two previous theorems.

For instance, if Y 1 = I then R(t) is a counting process which counts

the number of new items issued in the next t units of time. If Yi is

-15-JIL, 7



the cost to the consumer of item i, then Y + R(t) is the total cost

to the consumer of starting at time zero and staying in the system until

time t. Likewise, if Y, M ci - k where ci is the cost to the

consumer of item i and k0  is the fixed cost to the manufacturer of

producing item i, then c0 - k0 + R(t) is the total profit up to time t.

If Y(x) - x, another useful result can be found. In this case Yj = Xj,

the life length of item J. R(t) is now the sum of the life lengths up to

time t not counting the current life length. Hence, E(t - R(t)) =

t - E(R(t)) is the expected life of the current item thus far, and

U + E(R(t)) is the expected time of the next replacement. p + E(R(t))

is also the expected life length of the process given no replacements will

occur after time t.

In the following sections these results will be applied to the

various warranty policies mentioned in Chapter 1. In particular, such

quantities as the additional price the consumer should be willing to pay

for a given warranty, how much the manufacturer should charge and, under

appropriate demand function assumptions, the optimal warranty length a

manufacturer should offer, will be derived.

It should also be noted here that the conditions of Theorem 2.2

are not met for all warranty policies mentioned in Chapter 1. In

particular, whenever the warranty is not "renewing" (i.e., when the

warranty does not necessarily start over at the time of issuance of a

new item) then the cost of the item at time t is not an exclusive

function of x1 , the life length of the previous item. In these cases

a separate analysis will be performed to determine the desired results.
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2.2. Notation

The following notation will be used throughout this paper:

x i  life length of item i (assumed iid).

F(.) the distribution function of xi.

F(x) = Px i < x} i = 1, 2,....

It is assumed that F(O) = 0 signifying the xi  are

positive random variables.

the expected value of xi, E(xi) f f xdF(x).

A 0

IJA f xdF(x).
0

i
x The waiting time until the occurrence

tthSJ=l J.

of the ith  event (t0 = 0 by convention).

F(1)(t) P{ti < t. The convolution of F with itself i

times (F(0 (t) = 1 {t< } by convention).

N(t) n : t n 1 < t < t . The counting process.--l - n

M(t) E[N(t)] . The renewal function.

W the warranty length. In this paper the warranty

length is defined to be the minimum length of time

W such that if the initial item fails on or after

time W, the entire price of a new item must be

payed to replace the original.

c0  the price the consumer must pay to purchase the item

(or service).
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k 0  the cost to the manufacturer of producing an item

(or service).

L the length of time (predetermined) after which the

consumer will no longer pay for a new item. L is

assumed for convenience to be greater than or equal

to W.

C(L) the total expected cost to the consumer over the period

[0,L].

K(L) the total expected cost to the manufacturer over the

period [0,L].

P(L) C(L) - K(L). The total expected profit to the manufacturer

over the period [0,L].

T(L) the expected process length. The first time after L

that the item fails and the consumer would have to pay

a positive amount to replace the item.

T(O).

T the minimum length of warranty offered with a replaced

item (used exclusively in the (T,W) warranty policy -

see Chapter 4).

sthe initial "free replacement" time under a pro rata

warranty (see Figure 1.1).

Y(.),R(.) dummy functions used for various purposes (as is deemed

appropriate). Defined in Section 2.1.

Using the variables defined above one can generate the following values

which are of interest in comparing warranty policies.

-18-
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C(L) The cost per unit time to the consumer of staying
L

in the system exactly L units of time.

C(L) The cost per unit of "useful life" to the consumer
T(L)

(note the definition of L).

Co
C(O) - . This value is of use in the nonrenewing
T(O) T

warranties. In these cases it is the cost per "cycle"

of the process, where the cycle times represent

regeneration times of the process.

C linC(L)lin The long term average cost per unit ofSL-.- T(L)

useful time to the consumer.

P(L)
P lin The long term average profit per unit time.L-, T(L)

The quantity C(L)/r(L) arises naturally when a customer purchases an

item with the intention of using either that item or an appropriate re-

placement of that item until time L. Afterwards, the customer is willing

to take a new item for free but is not willing to pay for a replacement.

2.3. Comparing Warranty Policies

There is some question as to the proper methodology to use in

assessing different warranty policies. Blischke and Scheuer 14, 5, 6]

have suggested comparing total cost through time t, C(t), from the

consumer's point of view and profit through time t, P(t), from the

-19-



manufacturer's point of view. In making these comparisons they assume

the customer will stay in the system for exactly t units of time. By

making this assumption they have decided that even if the consumer is

entitled to a new item, free of charge, after time t, the consumer

will refuse it and, in fact, the consumer isn't even interested in

whether or not his or her item works at all after time t. There are

instances where this is a legitimate assumption but, in general, it

seems unrealistic.

A more appropriate assumption is that after time t the customer

will accept any free replacements but will not pay any positive amount

for a replacement. Note that this new assumption does not change the

value of C(L) since the customer will not pay any more after time L.

It does, however, change the total expected cost to the manufacturer

and, hence, the total expected profits.

An alternate method for comparing warranty policies, from the

consumer point of view (that takes the above assumption into account),

is to examine for the various policies. This term, as defined in
T (L)

the previous section, represents the total expected cost up to time L

divided by the total expected "useful life" or the cost per unit of

useful life to the consumer. It has the advantage of taking into

account that the consumer will have a functioning item for longer than L.

It should be pointed out that T(L) is not necessarily finite.

Example 2.3.1. Consider a renewing warranty policy with warranty length

W equal to 2 years. If the item lifelengths xi are distributed

deterministically such that xi = 1-j years for all i, then each item

-20-

On&!



will fail after exactly 1 years use. Since a new warranty of length

2 years is issued with each new item (by definition of a renewing

warranty policy), the customer will never have to pay for a new item

and

T(O) = T(L) =

An unfortunate difficulty involved in this comparison is that

T(L) is frequently too complicated to calculate. In fact, the only

policies (in this report) for which it can explicitly be calculated are

those for which a new warranty is issued with every new item. It can

be found in these instances because the times of issuance form a

renewal sequence.

Whenever the consumer is charged some positive amount for any

new item, the evaluation of T(L) is simplified tremendously. In these

cases there is no need to be concerned with the customer "staying around

to get a free item" and T(L) can be calculated by Wald's Lemma to be

T(L) = E xi) = E(N(L)+l) E(xi) =u(+MCL))

By definition the above value is the expected time of the first failure

after time L.

Lemma 2.3.2.

L < tj(l+M(L)) < T(L)

-21-
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Proof: By Wald's Lemma, i(l+M(L)) is the expected time of the next

failure after time L and, hence, is greater than or equal to L.

T(L) is the expected time of the next failure after L at which the

consumer must pay some positive amount to have the item replaced. Since

T(L) requires at least a failure, r(L) > p(I+M(L)).

For the generalized pro rata policies (the pro rata with delay

and the pro rata with rebate), the time after which the consumer must

pay for a new item, s, is typically small. If F(s) is likewise

small, then the probability of the current item (at time L) having

a total lifelength less than or equal to s, P{x N(L)+I< s , is very

small and T(L) can be approximated by p(l+M(L)). This can frequently

be a very useful approximation (especially when compared to the

complicated expressions derived in Section 3.4 and Section 3.5).

This approximation is also better than one might expect due to

the fact that conditioning upon a particular time frequently causes the

expected lifelength of that item to be larger than p, the expected

life length of an arbitrary item. The classic example of this arises

for the exponential distribution.

Example 2.3.2. Let {xi } be distributed exponentially with parameter
i

A. Then E(xi) = = 1 However, E I)

E(xN(L)+l) = E(6(L)) + F(y(L))
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where 6(L) and y(L) are the age and remaining life of the item

in use at time L as defined in Barlow and Proschan [2]. The

exponential process is memoryless and, hence, E(y(L)) = p. The

expected age of the current item is found by noting

E(6(L)) = f P{6(L) > x}dx

0

L
= f P{6(L) > x}dx

0

L e - x 
dx

0

-XL
=ii(l-e - )

-AL

Thus, E(xN(L)+l) = 2 - e and as L + the expected lifelength

of the current item is 2p or twice the "usual expected life length".

For the other warranty policies discussed in Chapter 1, i.e.,

the nonpro rata policies, T(L) is not so easily estimated. However,

these cases all share important features. Whenever the customer must

pay for a new item, the cost is exactly c0  and the warranty renews

itself or starts over. Hence, the times when a payment occurs form

a sequence of stopping times s = 0, Sl, s2, ... such that

S = {s n; n E I+ } is a renewal process with Zi = s i - si_ as the

independent identically distributed random variable that corresponds to

*' the times between regeneration points. Let G(Z) be the corresponding

distribution function of the Zi and let MG (t) - E(NG(t)) be the

appropriate renewal function [G(0) = 0 since F(0) 01.
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By definition t - T(O) = E(ZI), the expected time of the

first payment (not counting the payment at time zero). Since S is

a renewal process, Wald's Lemma can once again be used to estimate

the time at which the next renewal after L will occur:

T(L) E Z)= E(NG(L)+l) E(ZI) ( (MG(L)+l)T

Payments still occur at the same points as in the original process

and are assumed to be of the same constant value c This makes

Theorem 2.3 applicable and C(L) = C G(L) = c 0(I+M G(L)). Likewise,

CL) CG(L) c0(l+MG(L)) C0
TL) T(L) T(O)(l+MG(L)) T

for all L. Thus, for each of the other warranty policies discussed

C(L). c0

in this paper C(L and only the value T need be derived to

compare policies from the consumer point of view.

From the manufacturer's point of view, the one quantity which

stands out when comparing warranty policies is the profit per

customer. Profit per item sold does not work nearly as well due to

the varying prices at which items are sold under pro rata warranties.

Profit per customer does have the disadvantage of not taking into

account the fact that demand is a function of both price and the

warranty policy offered. However, once the manufacturer knows the

extra price he must charge for a warranty, he can calculate (or estimate)

the demand as a function of both the warranty and the price and, hence,

-24-

-.--- '



optimize over the set of possible warranties.

It is clear that P(L) may not represent a practical quantity

to the manufacturer due to the additional costs that he may incur

after time L. PG(L) represents the correct quantity and is found

from

PG(L) = CG(L) - KG(L)

K G L) can be found by noting that

KG(L) = E k

where ki  is the cost incurred by the manufacturer during the ith

interval of the regenerative process S. The ki are independent

identically distributed random variables (that are functions of the

ti E [si I si). Applying Wald's Lemma once again yields

[ G (L) +l 1
KG(L) = E ki] = E[kl](MG(L)+l)

and in particular PG(L) = CG(L) - E[kI](MG(L)+l).

Recall that in the nonpro rata policies CG(L) c0(MC(L)+l)

and thus, PG(L) = [c0 - E(kl)ICMG(L)+l). In these cases the expected

profit per customer per unit time is found to be

PG(L) c0-E(k1 )

T(L) T

-25-
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Fortunately, this is a value that can be calculated, unlike

P (L) which typically cannot be due to the difficulty in finding
G

MG(L) [see Blitschke & Scheuer 3].

For the standard pro rata warranty PG(L) - P(L) - C(L) - K(L)

and K(L) is found by K(L) - k0(I+M(L)).

For the two generalizations this analysis becomes more difficult

due to the possibility of "free items". However, if the free period

(O,S) is small compared to W and P(S) is also small, then K(L)

can be used as an approximation for KG(L) without much loss. In

this case the expected profit per consumer per unit time is approximated

by

P(L) = C(L)-k 0(I+M(L))

L L

To summarize, the expected cost per unit of useful life and the

expected profit per customer per unit time will be used to compare

different warranty policies from the consumer's and manufacturer's point

" of view respectively. For the generalized pro rata policies appropriate

approximations of these values can be used. These approximations take

into account the fact that the initial price of an item under a pro rata

warranty may be considerably larger than the expected cost at any later

time. This will be discussed further in Chapter 3.
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CHAPTER 3

RENEWING WARRANTY POLICIES

3.1. The Base Policy (No Warranty)

The first policy to be considered is the basic no warranty

policy. This policy is an important base to work from because

using it one can determine the additional cost the consumer should

be willing to pay for a particular warranty, or the additional price

the manufacturer should charge to "break even".

Using the notation of Chapter 2, assume an item is sold

without warranty for a fixed price co , c0 > 0, at time t0 - 0.

In this policy each time an item fails before time L it is assumed

the customer immediately replaces the item at a charge c The cost

per item, to the consumer, satisfies the hypothesis of Theorem 2.3.

So, by Theorem 2.3 the expected cost to the consumer in [O,L] is

C(L) = c0 + c0M(L)

where, as before, M(t) is the renewal function. Assuming each item

costs a fixed amount k0  to produce, P(L) is likewise found to be

P(L) - (co-kO ) + (co-k O ) M (L). The expected lifelength of the

process, T(L), is found by Wald's Lemma:

T(L) E xi ) E[N(L)+l] E(xI) - (M(L)+I)i
\ i= l~
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The expected cost and profit per unit of useful life are thus

C(L) c0 (l+M(L)) c0
T(L) l (l+M(L)) )

P(L) = (co-k0 )(l+M(L)) c0-k 0

t(L) u(I+M(L))

independent of L.
Co Co-k

Note that lim C(L) also equals - and lrm P(L) 0 0
L-,.. L L "

These results come from Lemma 2.2.

Of all the warranty policies discussed only the pro rata

warranties and the "renewing warranty" policies have the feature that

the cost at time ti  of replacing the item that just failed is

independent of x for all j 0 i. The other policies will be

discussed in detail later.

3.2. The "Renewing Warranty" Policy

The renewing warranty policy is so named because a new warranty

of equal length to the original is automatically given with the

issuance of each new item. The warranty is assumed to be for a fixed

length of time W. If the item fails before W a new item is

issued free of charge complete with a new warranty. If the item fails

after time W, then the item and warranty are replaced for a fixed

charge c.

-28-
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To find C(L), the expected cost to the consumer of replacing

the item until time L, the following cost function Y(') is

appropriate

0 x<WY(x) f
c x> W

In this case Y(x) represents the cost to the consumer of replacing

an item that has lasted exactly x units of time. R(T) is then the

sum of the costs up until time T and E[R(T)] satisfies the renewal

equation

T T

E[R(T)] f f [Y(u)]dF(u) + f E[R(T-u)]dF(u)
0 0

Note that by the definition of Y

T W T
f [Y(u)]dF(u) - f 0 • dF(u) + f cdF(u)

0 0 W

c[F(T)-F(W)] T > W

We can safely assume that T > W for the first term from the renewal

equation [2.1]. However, the second term involves c[F(T-u)-F(W)]

and it would be incorrect to assume T - u > W yu e [0,T]. Applying

the renewal equation and noting the above yields
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T-W
E[R(T)] - c[F(T)-F(W)] + f c[F(T-u)-F(W)]dH(u)

0

T
- C[F(T)-F(W)] + f c[F(T-u)-F(W)]dM(u)

0

T
- f c[F(T-u)-F(W)]dM(u)

T-W

-cM(T) - cF(W) - cF(W)M(T) + cF(W)M(T) -cF(W)M(T-W)

T
-f cF(T-u)dM(u)

T-W

Since R(T) does not include the cost of the initial item,

L
C(L) = c~+MiL)-F(W) - F(W)M(L-W) - f F(L-u)dM(u)1

11 L-W

This formula is interesting for a couple of reasons. First of all,

it is not the same as the formula derived in [4]. The difference is

that in [4] Blitschke and Scheuer simply multiply the expected cost

c(l-F(W)) by the expected number of renewals M(L). Their technique

overestimates the expected cost because in actuality there is no cost

in the tails, past time L. Secondly, the two formulas are

surprisingly similar and, in fact, if one estimates the final term by

assuming F(T-u) F(W) y ue[L-W,LJ then

f F(t-u)dM(u) f F(W)dM(u)
L-W L-W

-F(W)M(L) -F(W)M(L-W)

-30-
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and

C(L) = c[l+M(L)-F(W)-F(W)M(L)]

= c + c(l-F(W))M(L)

which is the result found in [1]. In either case the limiting value

is

* C(L) c(1-F(W))
L-, L 1

The result follows directly from the fact that F(.) is bounded and

Theorem 2.2. V(T) in this case is c[F(T)-F(W)] and lim V(T)
T-

= c[l-F(W)].

K(t) can now easily be calculated since the total expected

cost to the manufacturer is simply the cost per item times the

expected number of items or k0 (1+M(t)). Thus, the manufacturer's

expected profit in [O,L] is C(L) - k0 (I+M(L)). As mentioned before

[Section 2.31, this does not reflect the typical expected cost to the

manufacturer due to the additional obligations the manufacturer may

have incurred at time L. To take these into account the values

T = T(O) and E(kI) must be found.

T, the expected time until the consumer must pay for a new

item, is easily found by conditioning upon the first failure time and

noting that if xI < W then the expected time is x1 + T. The

formula is
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W a

T f (x1T) dF(x) + f xdF(x)
0 W

f xdF(x) + rF(W)

U U + TF(W)

Solving for T,

= p/(1-F(W)) = UIF(W) (by convention F(W) 1 - F(W))

A natural question at this point is whether or not ( > W
F(W)

for all F(.).

Lemma 3.2.1.

P(W) -

Proof:

W

f xdF(x) > f xdF(x) + f WdF(x)
0 0 W

W

b f xdF(x) + W(l-F(W))
* 0

> WF(W)
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1

Multiplying both sides through by the above result is derived.

To find the expected cost to the manufacturer until the consumer

must purchase a new item, a similar analysis is performed.

W c

E[kl] = f (k0 + E(k1 )) dF(x) + f k0 dF(x)
0 W

= (k0 + E(k1)) F(W) + k0 (l - F(W))

Solving for E(kl), the expected cost to the manufacturer

ko

E(kl) = F(W) '

and the expected profit per customer per unit time is

0o F() o(W)-ko

The renewing warranty policy has the unique feature that

MG(t), the renewal function for the regenerative process S (as

defined in Section 2.3), can be explicitly calculated as a function

of W, F(t) and M(t). The analysis can be done directly or by

noting that C(L) = cO(1+M (L)) since no payments are made after
0 G

time L. Thus,
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L
MG(L) = M(L) - F(W) - F(W)M(L-W) - f F(L-u)dM(u)

L-W

T(L) can now also be evaluated as

T(L) - T(MG(L)+l) and

CML - 0 for all L
T(L) T

Example 3.2. If {x } are distributed exponentially with parameter A,

then

L

MG(L) - (l-eW) - (-e-W)X(L-W) - f [L-e-L ]Xdu
L-W

-XL - I + e-XW  XL + XW + XLe- W -XWe - W  W + i - eXW

= e -XW[AL-MW] for L > W.

As expected M G(L) is linear in L (when L is greater than W) for

the exponential case.

C(L), the expected cost to the consumer is

C(L) - c0(I+MG(L)) - co + c0 e
-Xw (XL-XW)

T(L), the expected useful life is

T(L) , ,.(+MG(L)) p AW+L W
F(W) G

-34-
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For small W

e XW I + XW + =X) 1 + XW
2

and

T(L) I + W + L - W = + L

Likewise, the expected cost to the manufacturer is

K(L) = k0 e + k0 (XL-XW)

which for small W is approximated by k0 (l+AL), the standard no-

warranty value.

Comparison 3.2. The price at which the consumer is indifferent between

purchasing an item with a renewing warranty and purchasing an item
co

(for c0) with no warranty is found by comparing - for the two

policies. co, the indifference price, is

" Co= [F w -- w

From the manufacturer's point of view, the total profit under a

no-warranty system would be (co-k0 )(l+M(L)). Under the renewing

warranty system the total profit is

k
0(+M-(L)) 0 (I+MG(L))
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where c0 is the price the consumer is charged under the warranty

policy. Equating these two equations and solving for cot

-O (c 0 -ko) (1+M(L)) + ko
0 (1+MG(L)) •(w)

Thus, the manufacturer is indifferent between selling a product for

0 with a renewing warranty or selling a product for c0  without

warranty.

If the company is interested instead in profit per unit time,

then the appropriate measures are

c0-k 0  c0F(W)-k 0

and

Not surprisingly, these yield the same value for C 0  as does the

consumer's point of view.

Example 3.2. (continued). In the exponential case the price at which

the manufacturer is indifferent is

(co-k0) (l+L) AW
c + koeo AW (AL-AW) 0

and the price at which the consumer is indifferent is c=0 c0e
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3.3. The Pro Rata Warranty.

In the standard pro rata warranty policy the consumer is

charged a pro rata amount for a replacement item. Figure 3.1 shows

the amount the consumer must pay for a new item as a function of

the life length of the previous item.

cost

c
9. 0

-I

0 W time of failure

Figure 3.1. Replacement Cost Pro Rata Warranty

Note that the consumer will pay a positive amount any time the item

fails. This is because F(0) = 0. This means that the consumer never

receives a free item and, hence, T(L), the expected process length,

is found as in Section 2.3 by T(L) = p(I+M(L)).

The total expected cost to the manufacturer is likewise found

to be K(L) = k0 (I+M(L)).

The total expected cost to the consumer in the period [0,L]

is calculated by using the results of Section 2.1. In this case

Y(x) is the cost function defined by Figure 3.1.
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Y . x>W
and

T
V(T) =f E(Y(x)lx -u) dF(u)

0

W F~)+ f c 0dF(u) T > WI C0

IA xdF(x)
0

E(R(L)), the expected sum of the costs up until time L, satisfies

* the renewal equation

L
*E[R(L)I V(L) + f E(R(L-u)] dF(u)

0
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Hence,

L
E[R(L)] V(L) + f V(L-u) dM(u)

0

0 1O + co(F(L)-F(W))

L-W co
+ f W 1W + c0 (F(L-u)-F(W)) dM(u)
0

+ f 0-Lu dM(u)
L-WW

Simplifying, we get

EIR(L)) = co M(L) + co - F(W)] + co - F(W)j M(L-W)

L
+ fL- Co0[ L- u  F(L-u)] dM(u)

The expected cost to the consumer up until time L is found

by adding the initial cost c0  to the above value:

C(L) = c0 (I+M(L)) + c[ - F(W)] [1+M(L-W)I

L P'L-uL -0O W F(L-u)] dM(u)

L-W

Since V(L) satisfies the hypothesis of Theorem 2.2, lim C( V

L- L

where V lim V(t)
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Thus,

Im
C (L)  cow + co(-F(W))

L WU

c W c0 (I-F(W))

- f xdF (x) +
WV 0IJ

The long term average cost per unit of useful time (to the consumer),

c can now be calculated.

c lim C(L) = lim C(L) L
L-, T (L) L_. L T(L)

BohC(L) and L
oth (L are bounded and positive so the limit can be

L T(L

taken separately over the two pieces yielding

* C Pw  c0F(W)

If W - 0 in the pro rata policy then in effect one has the

base no-warranty-policy. Notice that in this event C(L) simplifies

to c0 (l+M(L)), the identical formula derived in Section 3.1.

The following example calculates the above values for the

exponential case.

-x t

Example 3.3. If F(t) 1 - e then M(t) - At. r(L), the

expected process length is

T(L) - p(l+XL)
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The total expected cost to the manufacturer is

K(L) = k0 (l+XL)

C(L), the total expected cost to the consumer is

C(L) - co(l+M(L)) + co[-W - F(W] I1+M(L-W)

L PL-u L

+ f co  Xdu - f c0 F(L-u)Xdu

L-W L-W

Using the method of divide and conquer

L L

f c0 F(L-u) Xdu = co 0 [l-e- (L- u)] Adu
L-W L-W

L

= C0AW c 0 e
-XL f Le u du

L-W

c W- ce [e X L- W

-AW
- c0 AW -c 0 (-e )

- 1
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L-u

L ~LuL f xdF(x)
f C~ -A- duJ fcd
L-W 0W L-W 0du

f1 -p- X -_ (L-u) e"I(-u )du
L-W L

-- 0 je Xf L eAu du- -CO e- L f LAe Nudu
0C w L-W w L-W

w L-W

C- 0 4ie-W] - -cO4[1eAXW]

+r L - LeL + Wx + le

Co -AW

o 2-WpF(W)+e

Substituting in to the formula for C(L)

C(L) -cO (14+1(L)) + CO[-W - F(w)] [1 + M (L -W)]
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- + AL +-L +-L X(L-W) - AW + 1 + e- 'W

+ c0 F(W)[1AW - AL - 2 -W

As expected, this equation is linear in L.

To get a feel for the meaning of this equation let A - I

(W.L.O.G.). This can be done by use of an appropriate time scale

without affecting the results. C(L) now simplifies to

C(L) = c40 + L + [1+L- - W + I + e - W

+c 0 [i - e-W 14 [w - L -

c 1 + eW- 1 [1-e-W]+ - [-e-W]) L >1W0-W i W >

Recall that L is assumed to be greater than or equal to W

for this formulation. If L < W a similar analysis can be performed

C(L) c O  L c

CM) co+ L +  W- L-u du
0

C, [1 + - L <W1-e
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C(L) is plotted vs. L for various values of W in Figure

3.3.1. Note that C(L) drops off significantly as W increases.

This is further verified by Figure 3.3.2, a plot of C(L) vs. W for

various values of L. In both graphs there is a discontinuity (in

the second derivative) at L W.
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FIGURE 3.3.1
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Expected Cost to the Consumer vs. Time for the Pro Rata Warranty
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life lengths).
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FIGURE 3.3.2
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3.4. The Pro Rata Warranty with Delay

In the first generalization of the pro rata warranty policy

the customer is not charged if the item fails before time s. After

time s but before time W the customer is charged pro rata for

the time after s. Figure 3.4 displays graphically the amount the

customer must pay for a new item as a function of the life length of

the previous item.

cost

c
o0

s W time of failure

Figure 3.4. Replacement Cost: First Generalization

As with all policies discussed in Chapter 3 a new warranty is issued

with each new item.

An important feature of this policy is that the consumer

receives a free replacement of the original item whenever the customer's

current item fails before operating for at least s units of time. In

this sense the policy acts exactly like the renewing warranty policy

analyzed in Section 3.2.

From the manufacturer's point of view, the costs up to time L

including possible obligations at time L are found by the use of
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Wald's Lemma. The renewal function is MG(L) as defined in

Section 3.2 with s replacing the W due to the free replacement

period now being [O,s].

L
MG(L) - M(L) - F(s) - F(s) M(L-s) - f F(L-u) dM(u)

L-s

The expected cost per cycle (recall that a cycle is defined as the

time between payments by the consumer) is also as in Section 3.2

E~k k0
E~k1 ] = ___)

and the expected cost to the manufacturer is

K(L) - E[k I] (1 + MG(L))

0 + M(L) - F(s) - F(s) M(L-s) f F(L-u) dM(u)

F(s) LL-s

T(L), the useful life to the consumer is similarly found to

be T(l + MG(L)), where T

(L) -" "-- 1 + M(L) - F(s) - F(s) M(L-s) - f F(L-u) dM(u)]F(s) L-s

From the consumer's point of view the appropriate cost

function Y(x) as shown in Figure 3.4 is,

'
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0 x<s

0Xi--

W~x) 0 N- x W

V(T), the expected cost of the first renewal up to time T, is

T
V(T) = f E(Y(x)x = u) dF(u)

0

f0 <s

T

of= - S dF(u) s < T < W

s

W T
f CO u dF(u) + f c dF(u) T > W
s w

The renewal equation as derived in Section 2.1 is once again

T
E(R(T)) V(T) + f E(R(T-u)) dF(u)

0

where R(T) is the total cost to the consumer up to time T not

including the initial cost c The solution is

4.
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T
E(R(T)) -V(T) + f V(T-u) dM(u)

0

W T

W- w

T-W W T-W T-u
+f dM(u) - f co U-AdF(u) + f f c 0 dF(x) dM(u)

0 Wa 0 w

T-9 T-u
+ f f cX8dx)dM(u)

T-W s a

T
+f 0 - dM(u)

T-s

0 0 [F(W)-F(s)] c (F(T)-F(W)J

+ M(T-W) co[uW-ps] - Cos [F(W)-F(s)I

T
+ c0 M(T) - cO0 F(T) - co f F(T-u) dM(u) -F(W) M(T-W)

T-W

T-s c 0  c0a8 T-s

+- f - MT-ups dM u) -- f~ T- [F(T-.u)-F(s)J dM(u)

Combining similar terms
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E(R(T)) = cO M(T) + co (W - F(W))(l+M(T-W))
ST-s T

+w--0 f T-u dM(u) - co f F(T-u) dM(u)
T-W T-W

S+ W s  -C 0 M(T-W) - s dM~u)
W-s s T-W s

+ -s F(s)(l+M(T-s)) - F(W)(l+M(T-W)) - f F(T-u) dM(u)]W-s T-W

C(L), the expected cost to the consumer up to time L, is

C(L) = c0 + E(R(L))

where E(R(L)) is as above. Unfortunately, this is quite a complicated

expression. For large L this can be approximated by aL where

c = lim c(T).
T-o T

Lemma 3.4.1. For the delayed pro rate warranty policy

• CO
W-s [W-s + sF(W) sF(s)] + cO(I-F(W))

. Wa -51-



Proof: V(T) is a bounded nondecreasing function so by Theorem 2.2,

c V where V* lim V(t) .

3.5. The Pro Rata Warranty with Rebate

The second generalization of the pro rata warranty also has a

"free period" during which the consumer receives a free item. However,

after the free period the consumer must pay the full pro rata cost. The

term rebate applies because

cost

c 0 "

s w time of failure

Figure 3.5

* Replacement Cost: Second Generalization

this policy is effectively a standard pro rata policy with the

customer receiving a rebate of the pro rata cost whenever the item

fails before time s. Figure 3.5 displays graphically the amount the

consumer must pay as a function of the life length of the previous

item.

The expected cost to the manufacturer and process length are

identical to those for the pro rata warranty with delay as discussed

in Section 3.4. That is
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K (L) k-(1 + MG(L))

F(s)G

and

T(L)=~~ 1s + MG(L)

where

L
M G(L) =1 + M(L) - F(s) -F(s) M(L-s) - f F(L-u) dM(u)

L-s

The expected cost to the consumer is found by noting that the cost

function

Following the derivation in Section 2.1,

0~T < s

V(T) = sc T<

w w s

and the solution to the renewal equation is
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T
E[R(T)] V(T) + f V(T-u) dM(u)

0

W P - P's8 + CO 0 F(T) -F(W)]

T-W cT-W
+ II W~ [ii - I dM(u) + f c 0 [F(T-u) -F(W)] dM(u)

0 0

T-sc
+ 0[ -i 11 dM(u)

T W T-u s

C 
0

= -~" - )+ CO [F(T) - F(W)I

+ COMT-W) - cF(W) M(T-W)

T
+ C0 M(T) -c 0F( T) - cof F(T-u) dM(u)

T-W

c 0 CO T-s
W u~ s[M(T-s) - M(T-W)] + W A- dM(u)

T-W

Adding the initial term~ and simplifying somewhat,

C(L) -cO (1 + M(L)) + cO -)I F(W))(1 + M(L-W))

+ oL-s L

w Ii 1 L-u dM(u) -co f F(L-u) dM(u)
L-W L-W
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-0Ii (1 + M(L-s))

If s = 0 the first four terms are exactly C(L) for the standard

pro rata warranty and the last term ie zero since V " 0.

The difference in consumer cost between the standard pro rata

warranty and the pro rata warranty with rebate is now easily seen to

be

co0 L co

W L- Lu dM(u) + -s (1 + M(L-s))
WL-s

Thus, if the consumer intends to stay in the system for L units of

time, this is the additional cost the consumer should be willing

to pay to add the rebate clause to his warranty (and to all future

warranties).
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CHAPTER 4

NONRENEWING WARRANTY POLICIES

Certain warranty policies do not start over or renew themselves

whenever a new item is issued. These policies include the standard

warranty policy and the generalization of it discussed in Section 1.2.

For these policies, the times of issuance of new items do not form a

regenerative process.

If, however, a new warranty is offered whenever there is a

cash transaction, that is, whenever the consumer must pay for a

replacement, then the times of payment generate a regenerative process.

This new process will have a different renewal function associated

with it along with different costs. Let this new function be MG(t)

with MG (0) - 0 by convention.

In each of the policies in this chapter the consumer either

pays the full price c0  to replace the item or else receives the new

item free of charge. Since the times of payment represent renewal

times the total expected cost to the consumer is

C(L) - c0 (1 + MG(L))

Likewise, the total expected cost to the manufacturer and total

expected useful life length are found to be

K(L) - E(kl) (1 + MG (L))
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and

t(L) T r(0) (1 + HG (L))

Since MG(L) cannot be explicitly calculated except in

special circumstances, (i.e., F(x) distributed exponentially) and

even then it is extremely complex, the limiting approximation

MG(L) .- will be used when comparing the manufacturer's profit perT

customer, P(L) - C(L) - K(L) = (c0 - E(k1 )] [1 + MG(L)]

The other comparisons are not affected due to the T(L) term

in the denominator which cancels the 1 + MG (L) term.

If additional information is known about G, the distribution

function governing the cycle lengths, a better estimate of MG(L) can

be made. (A different proof to Theorem 4.1 can be found in Feller,

Vol. II 111].)

Theorem 4.1. If G is a nonarithmetic distribution with finite

2 2variance, a G E(Z - T) , then

2 2

1 m M G(L) -G 2
L- ( T 2T2

Proof: Let

h(L) T rMG(L) + T - L
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Then

L L L
f h(L-u) dG(u) - T f MG(L-u) dG(u) + TG(L) -f (L-u) dG(u)
0 0 0

GG

+ f (L-u) dG(u)
L

TM(L) + T L +f (L-u) dG(u)
C L

Rearranging terms, one notices a renewal equation

h(L) f CO(u-L) dG(u) + f Lh(L-u) dG(u)
L 0

The first part is monotone so by the Basic Renewal Theorem:

lrn h(L) - ~ f f (u-L) dG(u) dL

Gou

f 1 N (-L) dL dG(u)

00
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Recalling

MG (L) - - = hL)

.2 2
[" lrn MG(L) - - --+T

TJ T

2 2
OG-T

2T
2

Thus, if a2  is known (and typically it is not) a better

estimate of MG(L) is

2 2aG-T
M (L) L + _G
G T 2T 2

4.1 The Standard Warranty Policy

The standard warranty policy is the fixed time warranty. It

is typically offered with such items as automobiles, stereos,

televisions, washing machines and other complex, expensive devices.

In this policy whenever the purchased item fails before time W,

the item is replaced free of charge. The warranty, however, is not
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renewed. If the next item fails and the sum of the failure times of

both the first and second item is less than W (i.e., the warranty

has not expired yet), then another item will be issued once again

free of charge. This continues until the total time is greater than

W. At that point no more free items are issued and the consumer must

pay the full price for a new item.

The distribution of the first time of failure after time W

can be calculated via a renewal argument. Let y(W) be the remaining

life of the current item at time W,

Y(w) = SN(w)+l - w

and let

Pt (W) "Pr{y(W) > t)

If xI  is the time of the first failure then

I XlIW+t

pt(W) 0 W <x < W + t

Pt(W-xl) xI < W

Conditioning upon xl,

0W+t W
Pt(W) - f t • dF(x) + f 0 * dF(x) + f pt(W-x) dF(x)

W+t W 0

W
- F(W + t) + f pt(W-x) dF(x)

0

-60-
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Pt(W) can now be solved for by use of the renewal theorem

W
pt(W) - F(W+t) + f F(W+t-x) dM(x)

0

G(t), the distribution function governing the cycle lengths, is

found by noting

0 t < W
G(t) =

II - Pt(W) t > W

Using this one can theoretically find a2

o D dG(t) - T

0

where T is derived later in this section. 02 is a necessary value

to determine the bias in estimating MG(L) by - (see Section 4.1).

Frequently pt(W) is difficult to calculate. In these cases

knowledge of the distribution function of the items F(t) can some-

times be used to get bounds on pt(W). The following theorem is found

in Barlow and Proschan [2]. The proof is short and of interest.

Definition: New Better (Worse) Than Used. A distribution F is

said to be new better than used, NBU, if

F(x + y) <f (x) (y) x > 0, y > 0.
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Likewise F is said to be new worse than used, NWU, if

F(x + y) > F(x) F(y) x > O, y > 0.

Theorem 4.1.1. If F is NBU, then

Pt(W) < F(t)

Proof: If F is NBU, then

W
Pt(W) = F(W + t) + f F(w + t - x) dM(x)

0

w
< F(W) F(t) + P(t) f F(W - x) dM(x)

0

w
= F(t) F(W) + f F(W - x) dM(x)

0

- = F(t) [I - M(W) + M(W)]

S= F(t) . 0

If F is NWU, the same relationship (and proof) holds with the

inequalities reversed.

The total cost to the consumer over one period or cycle is

co (since the consumer only pays once, at the beginning of the cycle).

The expected length of the cycle, T, is the expected time of the first

failure after time W, which is found by Wald's Lemma, T p( + M(W))
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The expected cost to the manufacturer of a cycle is the cost of an

item times the expected number of items issued during the cycle or

ko(l + M(w))

M G(L), the expected number of cycles up to time L is difficult

iG (L)

to calculate explicitly. However, it is known that G converges
1

to - and, hence, for large L, MG(L) can be approximated by

L

U(I+M(W))

The expected cost to the consumer per unit of useful life is

C(L) co [I+MG(L)] c0  Co0
T(L) T [I+MG(L)J - T P(+M(W))

The expected profit per consumer can be approximated by

P(L) = L[c 0 - k0 - k M(W)]/u(l + M(W))

and the expected profit per customer per unit time is

P: P(L) t: Co 0o
.. (L) u (I+M(W)) U

Comparison 4.1. Comparing this policy with the no warranty policy,
*

the price co  such that the consumer is indifferent between the two
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policies is found by equating the expected costs per unit of useful

life

o o
U [ I+M(W) or,

c0 . coil + M(w)]

The approximation to the price the manufacturer should charge to

break even is

L  koL
0 0

(l+M(W)) - - (c0 - k0 ) (I + M(L))

or

(c0-k 0 )(I+M(L))P (l+M(W)) k 0
c0 L + - (1 + M(W))

As L+

0 - (c0 - k0 )(l + M(W)) + k 0 (1 + M(W)) c0 (1 + M(W))

which is the same as c .

Example 4.1. If {x i is distributed exponentially with parameter

X, then
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T- t(1 + XW) = ja + W,

C(L)= 0 and
T (L) V+W

P(L) W L

Other interesting results can be derived in this specialized

case. The memoryless property of the exponential distribution implies

that at time W, no matter how many items have been replaced thus far,

the distribution of the current item from now on is exponential with

parameter X. Thus, a formula for G(t), the distribution function

for the cycle times, can be found.

1 -A(t-W) t > W

G(t)

10 t <W.

Likewise, G (n)(t), the convolution of G(t) with itseif n times,

is given by

e- .(t-nW) ]

k! t > nW

G(n) (t) =n

10 t < nW

MG(t), the expected number of cycles up to time t is thus found

by the finite sum
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MG(t) = G ( n () = G( n (t)
n=l l<n<t/W

Making both sums finite,

G l<n t/W i- kk._ _ k=0

In the introduction to this chapter it was shown that

rnim M (L) - -T

LG J 2T 2

where

= E[Z T] 2, (Z1  is the cycle length).

In this example, due to the properties of the exponential

2 2
distribution, a is equal to X2 . A good approximation to M G(L)

is thus

L 2- - )2
i. M(L -- 2 ( +W) 2

, To check the accuracy of this approximation,

LL 22 -

MG(L), -iL and L - -GT T 2T 2

are plotted in Figures 4.1.1 - 4.1.6.
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FIGURE 4.1.1
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FIGURE 4.1.2
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FIGURE 4.1.3
4

w - 1.0
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FIGURE 4.1.4
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FIGURE 4.1.5
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FIGURE 4.1.6
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4.2. The (TW) Warranty Policy

The (T,W) warranty policy is a generalization of both the

standard warranty policy and the renewing warranty policy. It is

currently being used by such major electronics firms as Texas

Instruments. It provides greater consumer protection than the

standard warranty but less than the renewing warranty.

The initial item or product is issued with a full warranty

of length W. If the item fails at time t1 < W, then the item is

replaced by the manufacturer, free of charge, and a new warranty of

length max(T,W - t1 ) is issued with the item.

As in the other nonpro rata policies discussed in this paper,

the total cost to the consumer over one cycle is exactly cO . The

other values of interest, the expected cycle length, T, and the

expected cost to the manufacturer of a cycle are found by renewal

arguments. To simplify the necessary equations a slightly different

set of notation will be used.

renewing
warranty
period

0 x x + T

Let the total warranty length be x + T where the interval

(x, x + T) represents the period of time during which a renewing

warranty policy of length T is in effect. It is known from Chapter

3 that if an item fails during this interval the additional expected

k0

cost to the manufacturr 0 and the additional expected cycle
-(T)
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length is .' .If AWx is the total expected cycle length of
FP(T)

this policy and t1 is the time of the first failure, then by

conditioning upon tl1

x x+T O

A(x) f t1 + A(x-t) dF(t) + f t1 + dFt + f tdF(t)
0o x I F(T) dFt) X+

X+T x

1 tdF(t1) + tTT f dF(tl) + f A(x - t) dF(t)

x

F(T)0

This is a standard renewal equation with T fixed and x as the

variable. It is solved by

A(x) u+ - (F(x + T) -F(x)) + uM(x)
F(T)

+ f F(x + T-u)-F( xu)dM(u)

F(T)

-r, the expected cycle length, is clearly seen to be A(W -T)

T j(1 + M (W - T)) + .- (F(w) - F(W - T))
* F(T)

W-T
a,+ f F(W-u) -F(W-T-u) dM(u)

F(T) 0
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The expected cost to the manufacturer of a cycle, E(k1) is

likewise found from the renewal equation

B(x) -= ~ -t Ft x+T -k0  dt)+ f 0 0 dF(t)
00 x F(T) X+T

- k F(x) + - (F(x + T) - F(x)) + f B(x - t) dF(t)
0 F(T) 0

where B(x) represents the total expected cost (not counting the cost

at time zero) to the manufacturer of a cycle. Solving for 1(x),

B(x - k0 F(x) + k- (F(x + T) -F(x)) + Ic0 Jx Fx - u) dM(u)
F (T) 0

+ k0 xF(x +T-u) -F(x-u) dM(u)
F(T) 0

= kc MWx + _ (F(x + T) -F(x))

0 FP(T)

+-k0 fxF(x + T u)-F(x-u) dM(u)
F(T)

The expected cost of a cycle is

E(k 1  k k0 + B(W- T)
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It is not currently known how to calculate M G(L), the

expected number of cycles up to time L. Nor is it known how to

find a2  the variance of the distribution function governing

MG (L). However, the approximations of the last section are still

valid,

C (L). c 0

T(L) T

and

P(L) C0  k0+B(W-T)

Example 4.2. If the life lengths of the individual items are

distributed exponentially with parameter A, then

A(x) = (l + Xx) + Ie AT(e - Xx - e- '(x+ T )

+ eXT f eX(x-u) - e_(x+T-u) )du
0

u + x + ue- X(x - T) lie- Xx + Pe AT e- x fx e)u du
0

-Ax x eAu
- lie f du

0
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- U + x + e (x-T) -x +AT -X(x-T) ue-XX

M x + eAT

Thus,

T -A(W - T)- W - T + veA
T

Likewise,

B(x) = Ax + k0 eAT (e - Ax -Ae - (x+T))

+ ko eAT fxe-X(x-u) -- (x+T-u ) Xdu

0

AT
k (x + e -1)

and

AT
E(k 1 ) I k 0 (M(W - T) + e T)

The expected profit per item sold is c0 - E(k 1 )

- cO - k0 (A(W - T) + e T ) and the expected profit per consumer

per unit time is approximately

AT
P(L) co-E(k) co-k 0 A(W-T)-k 0 e

t(L) - W-T+IjeAT
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For small AT the exponential term can be approximated by

A +T (XT)2

e = I+XT+ 22

in which case

E(k ) =k Xw- T + I + T + (XT)
2 )

1 0( 2

= k0  i + XW + .

Recall from Section 4.1 that for a tixed warranty of length W, the

total expected cost per cycle to the manufacturer was k0 (l + Xw).

Thus, if T is small relative to the expected life length of an item
T

(AT = is small) the extra cost per item sold can be approximated

by

koT

This approximation is valid in many instances even when the life

lengths are not strictly distributed exponentially. For instance, if

the failure distribution is approximately exponential during the

period [0, W] with parameter i then the approximation is still

valid independent of the distribution after time W. In this case,
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= ~) will frequently be greater than or equal to v' anid

0 will provide an upper bound on the expected additional cost

per unit sold.

-79-



CHAPTER 5

THE OPTION OF REPAIRING

When an item under warranty fails, the manufacturer is often

faced with the decision of whether or not to repair the item in lieu

of replacing it. In this chapter it will be assumed that the manu-

facturer has decided to replace whenever more than a certain amount of

time, s, remains in the warranty and repair whenever at most s is left

in the warranty. This policy is depicted for the standard warranty

policy in Figure 5.0. The and2denote new and "used" items re-

spectively.

replace repair

0 0D
0 W-s W

s

Figure 5.0

A Replace-Repalr Policy for the Standard Warranty

In Chapter 6 conditions will be derived under which this type of policy

is optimal and the question of repairing vs. replacing will be discussed

in detail.

It will be assumed throughout that each time an item is repaired

fixed cost of c2  is incurred by the manufacturer and the repaired

*.m has a life distribution F2 (t). For notational convenience, c1

80
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and F1 (t) will represent the manufacturer's cost and life distribution

of the replaced (or new) item, respectively.

5.1. The Renewing Warranty Policy

0 repair

0 W

Figure 5.1

The Repair-Replace Policy for a Renewing Warranty

Recall that in the renewing warranty policy whenever a new item

is issued a new warranty of length W is also issued. Since the re-

place-only option has previously been examined (see Section 3.2), the

only repair-replace policy which needs to be considered is the policy

with s = W.

The quantities of interest are still T and E(kl). To find

* these it is necessary to condition upon the first time of failure, t,

* and use the formulae derived in Section 3.2.

T = t + dF (t) + f tdFl(t)f F2 (W) 1 w

- 11i + 2(W) F(W)
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W C2 0

E[kl] C + f dFl(t) + f 0 • dF (t)

+c2 F1 (N)

F 2 (W)

Example 5.1. If the repaired item has the same life length distribution

as the original then

T = + p F (W _ 11
P(W) F(W)

and

C 2F(W)

E(kl) c + F(--(-
F(tJ)

If in addition the distribution is exponential with parameter

A, then

• AW

and

xW
E(k) C1 - c2 + C2e

5.2. The Standard Warranty Policy

In the standard warranty policy the item and all necessary re-

placements are replaced or repaired free of charge if the failures
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occur before time W. The replace-repair policy is shown pictorially

in Figure 5.0. For notational convenience the equivalent notation of

Figure 5.2 will be used to analyze this policy. The analysis will use

replace repair

0 x x+s

Figure 5.2

An Equivalent Replace-Repair Policy

the same techniques that were used in Section 4.2.

Let A(x) represent the total expected cycle length of the

policy depicted in Figure 5.2. Conditioning upon the first time of

failure, t, and using the results of Section 4.1,

X
A(x) = f t + A(x - t) dFI(t) + f tdFI(t)

0 x+s

x+s
+ f t + 2(l + M2 (s + x - t)) dFl(t)

x

x+s x

S11 1 + f 2 ( + M 2 (s + x - t)) dFl(t) + f A(x - t) dF (t)
x 0

Solving for A(x) via the renewal theorem,
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x+s

AWx) = (I + Ml(X)) + f P2 (I + M2 (s + x - t)) dF1 (t)
x

x x+s-u
+ f f p2(l + M2 (s + x - t - u)) dFl(t) dMl(u)

0 x-u

As in Chapter 4, T = A(W - s) so,

w
T 1 (1 + MI(W - s)) + f V2(l - M2(W - t)) dF1(t)

W-s

W-s W-u

+ f f1 12( + M 2(W - t - ux)) dF 1(t) 1(u
0 W-s-u

The expected cost to the manufacturer of a cycle or the expected

cost per item sold, E(k1 ), is found by letting B(x) represent the

total expected cost (after time zero) of a cycle.

x x+s

B(x) f cI + B(x - t) dFI(t) + f c2 (1 + M2 (x + s - t)) dFW(t)
0 x

x+s x

- cFl(X) + f c2 (l + M 2 (x + s - t)) dFW(t) + I B(x - t) dFl(t)
x 0

This is in the form of a renewal equation and can be solved using the

renewal theorem.
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X+s

B(x) = ClF (x) + f c 2 (1 + M2 (x + s - t)) dFl(t)
x

x
+ f clF(x - u) dMl(u)

x x+s-u
+ f f c2(1 + M 2(x + s - t - u)) dF (t) dl(U)
0 x-u

x+s
clM l(x) + f c2(1 + M2(x + s - t)) dFI(t)

x

x x+s-u
+ f f c2(1 + M2 (x + s - t - u)) dFI(t) dM1 (u)
0 x-u

The total expected cost of a cylce is E(k ) cI + B(W - s).

The following theorem will be used in Chapter 6 to prove the

optimality of certain types of replacement policies.

Theorem 5.2. If Fl(x) is exponential with parameter X, then

B(x) = c1A1x + h(s) where h(s) is a function of s and M2 () only.

Proof: If Fl(x) is exponential with parameter X, then

x+s-u
f c2(1 + M2 (x + s - t - u)) dFl(t)
X-U

x+s-u c2(1 + M2 (x + s - t - u)) Xe- Xt dt.
X-U
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Using the change of variables

y = t + u - x e Ax eAu f c2 (l + M2 (s - y)) Xe- Ay dy
0

Substituting into the equation for B(x) and realizing that the above

identity also holds for u = 0,

B(x) c Xx + e-Ax f c2(1 + M 2 (s - y)) Xe-Xy dy
0

- Xx fx eXu 1 c2(l + M2(s - Y)) Xe-Xy dy Xdu
o 0

ClXx + e X f c2(l + M2(s - y)) Xe-Xy dy
0

+ e- X fx XeXu du f c2 (l + M2(s - y)) Xe-X y dy
0 0

xNoting e-I  f Xe u du =I-e

B(x) c 1Ax + f c2(l + M2(s - y) Xe-  dy
0

c Xx + h(s) 0
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The above formula for B(x) can be verified virtually by inspection.

If F1(x) is exponential, then the expected number of renewals during

the interval [0, x] is Xx. The memoryless property of the exponential

distribution implies the distribution of the remaining life of the

current item at time x is still exponential. Hence, by conditioning

upon the first failure after time x, the above formula for B(x) is

seen to be true.

Example 5.2. If FI(.) and F2 (.) are exponential distributions with

parameters X and X2 respectively, then T, the expected time until

the consumer will have to pay for a new item, is found from A(W-s).

Using the results derived in the proof of Theorem 5.2,

T= A(W - s)

s -Xl
(I + X (W - s)) + f P2 (i + X2 (s - y)) X e dy

1 ~ o1

00V I + W -s + P2Fl(s) + SFl(S) - f llYe - Xl y dy

s s -Xs
= 11+ W -s + (P2 + s) F (S) - 1 + 1i e + se

12 11 1

W s + P 2 P- e + ie 1
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The above formula can also be verified by inspection. At time

W - s, a new item with distribution FI() is operating. It will fail

within the next s units of time (i.e., before time W) and be repaired

with probability F1 (s). Thus, with probability FI(s) the remaining

expected life at time W is P2. If the item at time W - s does not

fail during the next s units, then due to the memoryless property of

the exponential the expected remaining life is 1I  and hence,

=W + 2 Fl(s) + VII(s)

The total expected cost to the manufacturer of a cycle can also

be looked at as the total expected cost to the manufacturer per item sold.

In either case it is E(kI). Using Theorem 5.2,

5 -xl
E(kI) = c I + c1 XI(W - s) + f c 2 (1 + A2 (s - Y)) X1 e dy

0

C + clX(W - s) + c 2  e + c 2 X2 sl -

s -l- 2 llye dy

cI +c 1 X 1(W - a) + c2 (1 + A2s) ( - e ) - 22 I

-AIS - is

+cAle1 S
+ c21 e + c2 2 se
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C 1 + Cl1X(W- s) + c2 (1 + )2(s -

+ (c2 2111 - c2 ) e

Notice that if s = 0 the formula simplifies nicely to

cI + c IW, the value derived in Section 4.1. Also, if cl c2  and

X = X2 the same value is derived,

E(kI) = cI + clXl(W -s) + cl + Cll(S - 1l)

+ (c1 A1 Pi - c1 ) e 
1

C 1I + c l'W I lX 1s + cI1 + cl1 1s -c I

=cI + ClIW • 1 ~+ 1 C 1 ~aC

5.3. The (T, W) Warranty Policy

In the (T, W) warranty policy the item is replaced or repaired

free of charge any time the item fails before time W. In addition, a

new warranty of length max (W - t, T) is issued with the replaced or

repaired item. Since the new warranty is at least of length T, the only

replace-repair policy that needs to be considered is as depicted below

in Figure 5.3.1.
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repair

replace renewing
warranty

0 W-s W-T W

Figure 5.3.1

The Replace-Repair Policy for the (T, W) Warranty

For notational convenience, however, the equivalent policy in Figure

5.3.2 will be analyzed.

repair

replacerenewingreplace warranty

o x x+; X+;+T

Figure 5.3.2

An Equivalent Policy

Let A(x) once again represent the total expected cycle length

of the above policy. Conditioning upon the first failure time, t, and

using the results of Section 4.2

A(x) - f t + A(x-t) dF1 (t) + f tdFl(t)
0 x+s+T

X+s x+s+T 12

+ f t + a(x+i-t)dF (t) + f t + - dFl(t)
x x+; 2(T )
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where a(-) is found from Section 4.2 to be

112
a(z) V12 + "2 (F2 (z + T) - F2 (z)) + V2M2(z)

PF2(T) 2 222

2 z

+ _TP f (z + T - u) - F(z - u) dM2 (u)F 2 (T) 02

Letting

x+; x+i+T 112
D(x, ) f a(x + ; - t) dFl(t) + f  dFl(t)

SXF 2(T)

x
A(x) = f tdF1 (t) + D(x, ;) + f A(x - t) dF (t)0 0

x
= 1 + D(x, g) + f A(x - t) dFl1(t).

S01

By use of the renewal theorem

x

A(x) = 1i(I + Ml(x)) + D(x, s) + f D(x - t, s) dM (t)
0

T, the expected cycle length is found by reverting back to the notation

of Figure 5.3.1.

W-s
T =I(I + M1 (W - s)) + D(W - s, s - T) + f D(W - s - t, s - T) dMl(t)

0



The expected cost to the manufacturer of a cycle, E[k1  is

similarly found from

x x+i
B(x) = f c1 + B(x - t) dF1 (t) + f c2 + E(x + S - t) dFW(t)

0 x

X+;+T c 2

+1 f-- dF+s F 2 ( T ) d1~t

where B(x) represents the total expected cost (not counting the cost

at time zero) to the manufacturer of a cycle and E(.) is (from Section

4.2)

c
E(z) c2M2(z) + - (F2 (z + T) - F2(z))

F2 iT)

c 2  zn

+ F2 (T)f z(F 2 (z + T - u) - F2 (z - u)) dM2 (u)

Letting

D(x, s) clFW(x) + c 2 (F (x - s) - F (X))
c2 1

+-2 (F (x + a + T) - F(x -s))
F 2(T)

x+;
+ f E(x + - t)dF(t)

x

and using the renewal theorem,
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B(x) = D(x, s) + f D(x - t, S) dMl(t)

0

The expected cost per cycle is thus

W-s
E[k 1 + D(W - s, s - T) + - s - t, s - T) dMl(t)

0

Theorem 5.3. If FI(.) is exponential with parameter A, then

B(x) = c1 Xlx + h(s, T) where h(s, T) is independent of x.

Proof: If FI(.) is exponential with parameter X, then by use of

the memoryless property of the exponential

B(x) = clXIx + h(s, T)

where h1 (s, T) represents the total expected cost of the policy in

Figure 5.3.3.

renewing
warranty

0 s-T s

Figure 5.3.3

As can be seen by the figure, h(s, T) is independent of x and, in

fact, is a function of s, T, and F2 (') only. 0
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Example 5.3. If F1 () and F2 (*) are exponential distributions

with parameters X1 and A 2 respectively, then T, the expected

time until the consumer will have to pay for a new item, is found from

A(x). As in Theorem 5.3, this simplifies to x plus the total expected

length of the policy depicted in Figure 5.3.3. Using the results of

Example 4.2,

A(x) x + f Ts - T + V 2 eX2T) A 1e
1  dy

5 2T -Aly -A~y d

+2f y+V 2 e X1e dy + J yXle dy
s-T s

= x +( s - T + p2eX2T)( 1 - e

+ 12 eX2T(e-l(S-T) - e-Xis)

+ V l(e - Xl( - T) - e-Als)

-XlS -A 1 (s-T) -AlS -AlS
-se + (s - T) e + se + pe

)' T  -X 1s [  XIT X2 T ]

x + s-T + 2 e + e Vl5~ e -1 2ei e•

T is found from A(W- s)
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The total expected cost, to the manufacturer, of a cycle is

found from Theorem 5.3 and Example 4.2

E c+ 'x s-T -2T
I l f c2X2 (s - T - t) + c2e

0

s X2 T

+ f c2e dF I(t)
s-T

=c I + c1 X1x + c2X 2(s - T) I - e

+c 2 e X2T(i - e-1l )- c2 2 (1 - le -(T)- (s-T) e )

=c 1 + c1)X x+ c2 2 (s - T - 1 + c2e 2

-c ei s (A2UleXlT -e)
X2T )

+ c 2 e- /

To get comparable values use x - W - s.

5.4. Optimal Replace-Repair Policies for Exponential Distributions

Given the fact that the manufacturer wishes to have a replace-

repair policy and assuming that the manufacturer wishes to maximize

expected profit per item sold, the optimal policy for the exponential

case can be found. This optimal policy will be derived for both the

-95-

OEM,



standard warranty policy and the (T, W) warranty policy. In both

cases the optimal policy will be derived by finding s , the value of

s that maximizes the expected profit per item sold.

Consider the standard warranty policy as depicted below in

Figure 5.4.1. Assume replaced and repaired items are all distributed

exponentially with parameters A and A and costs c1  and c2
1 2 1 c

respectively.

replace repair

0 W-s W

Figure 5.4.1

Standard Warranty Policy

Theorem 5.4.1. If c1 > c2 and c1X1 < c2X2, then the value of s

that maximizes the expected profit per item sold for the standard

warranty policy is

in - m l n Lc2 Xl_ c2 2] ,

Furthermore, s is positive.

Proof: The expected profit per item sold is co - E(kI). Thus,

maximizing profit is equivalent to minimizing E(k1). From Example 5.2
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E(k1) I Cl + C1X 1 (w - 8) + c2 (l + 2 - u1 ))

-x i
+ (c2A2t1 - c2) e

2f
S2E(k1 )

E(k1) is convex in s if 2 > 0 for all s.

BE(kI1)  -X),is

as = -C 1 + c2 2 + (c2 A1 -c 2 2 ) e

aE(k1 )

Thus, E(k ) is strictly convex in s iff X 2 > X ' Note that this

condition is a result of the hypotheses that c > c2  and cl1A1 < c2 2 .

Since E(kI) is convex the value of s that minimizes E(kl) is that

aE(k1)
value of s that sets - = 0,as

- c + c + (c e - 0
1 1 2 2 ~ c2 1 c 2 2)

Solving for ,

in
- 1in [ c2 2 1 - 2 2J

lc2X2-c17 
1
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The condition A2 > 1 implies the necessity of c2X2 > c 1A because

otherwise the logarithm would be of a negative number. In order that

as be positive it is further necessary that

c2(X 2 - X1 ) > c2 X2 - c.X1  or,

c 2 < c 1

Thus, the necessary conditions for s to be positive and the point of a
global minimum are c2 < cI and c2X2 > c1 A The fact that E(k1 ) is

convex insures that if s > W then the minimum feasible cost occurs when

s = W.

Using the results of Theorem 5.4.1 it is possible to graph the
,

values of s for various values of c., c2, A1, and X2. A plot of

these values is given in Figure 5.4.2. Without loss of generality

temporal and monetary units have been adjusted so that cI  1 monetary

unit and p1= 1/X1 = 1 time unit. The equation for s simplifies to

c2 (X2 -1)
2 2na In
c2A2-1

with c2 < 1 and c2X 2 > 1 or, 02 < C2 < 1.
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1 2

0 W-s W

switching policy

20112 = 05 FIGURE 5.4.2 P'2 -.8

.2 C, = 1 unit

V2 4 ) 1 l-1unit

1.5 112- 4

z

U

X-

CL

0.5

0t

O.O 0.2 0.4 0.6 0.81

COST OF ITEM 2 (C2)

Optimal Switching Times - Standard Warranty
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A similar analysis can be performed for the (T, W) warranty

policy. The notation used will be that of Figure 5.4.3, with x

repair

replacerenewingreplace warranty

Q I Q
0 W-T-x W-T W

x T

Figure 5.4.3

representing the amount of time before the renewing warranty period begins

after which the manufacturer should begin repairing in lieu of replacing.

Under the previously defined notation s = x + T.

The total expected cost to the manufacturer per item sold is

E(k1 ). From Section 5.3, using the appropriate change of notation,

2T
E(k )  1 + cIAI(W - T - x) + c2X2(x - U1 + c2e

- I(x+ T)A 1 l T 2T )

The optimal replace-repair policy for this warranty will be

derived in Theorems 5.4.2 and 5.4.3 (depending upon the value of T).

Throughout the theorems and proofs, the "feasible values of E(k

will refer to x E [0, W - T] The other feasible policy is the

replace-only policy which will be considered when appropriate.
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Theorem 5.4.2. If

(1) C2 < c,

(2) c1A1 < C2A2  and

1 Cl
(3) T < 1 In ,

-2-X1  c 2

*

then there exists a nonnegative value of x, x , that maximizes expected

profit per unit sold for the replace-repair policy of the (T, W) warranty
*

as depicted in Figure 5.4.3. Furthermore, the value of x is

X min - T, 11 in 21 T])-c2X

To prove this theorem three short lemmas are needed.

Lemma 1: A 2 > A I

Proof: By hypothesis

S1 c > 2  > 0 and

c 2 X2 > Cl1A 1 > 0.

Thus,

Cl
2 c2  1 1

IV01
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Lemma 2:

cA
1 <ln 1 < I n 2

0< x2_1 n 2 1i I  1

Proof:

0 < Cl1A < c2X2 by hypothesis

Thus,

C1  X20 < - --
c 2  X1

Using the monotonicity of the natural logarithm and Lemma 1,

1 ln-< InX
0<In < 1 in .

A 2XI c2 X2X 1 X

Lemma 3: If

I Cl

T < >A - In- ,
X2_X1 C2

then the expected cost per item sold when x - 0 is less than or equal to

(greater than) the expected cost per item sold for the replace-only policy.

Proof: The E(k1) when x - 0 is
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E(k l)ixO cI + C1 A(W - T) - c2A2 P2 + c2e 2

A I T A 1T eA2T)
+ c 2e A 2 P1e  -e

A 2 T A2 ( 2 -A1 )T=C1 + clAl(W -T) + C e - ce

1112 2e

The expected cost with no option of repairing is found in Section

4.3

AiT

c lX (W - T) + c e

Thus, the x = 0 policy is "better than" or equal to the replace-only

policy iff

2 T  (A2 -Ai)T 1 iT

c 1 + c2 e - c2e 2 1 < e iff

c eX cle I1 - iff

X e 2 T X1 T
elce < cle

Taking logarithms and rearranging terms via Lemma 1, this is seen to be

equivalent to

-103-



c
T < in ,

A 2-A c2

which is the hypothesis.

Proof of Theorem 5.4.2. The expected profit per item sold is c0  minus

the expected cost to the manufacturer of a cycle or c0 - E(k1 ). Thus,

maximizing profit is equivalent to minimizing E(k1 ). The first thing

to note is that by Lemma 3 and the third hypothesis, the expected cost

of the (W, T) warranty with no option of repairing (i.e., the replace-

only policy) is greater than or equal to the expected cost with the

option of repairing. Thus, the optimal policy includes repairs.

To find the optimal value of x it is necessary to take the

derivatives of the equation for E(k1 ).

a[E(kc) ] -X 1  X e( 2 -A1 )T A
ax =cAx - clA + ce Ile -X2)"

ax22 1 1 2 12

a2[E(kl X-X02X1)XlXT

= 2l12 (2 1 /x2

The formula for E(k ) is convex in x since
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a2
ax2 [E(k 1)] > 0 iffax2

X2  1 e 2 - 1  >0 iff

1 X2

2 1 1

which is true by Lemma 3 and the third hypothesis.

The point x at which the first derivative is zero is, thus,

the optimal point, if feasible, and is found from

0 2x2 - C I + e (c2 e (X2xI)T c2 2

Solving for x,

^ c2X2-e2A1e
x =  

i n x22_Cl

x is nonnegative if the numerator is greater than or equal to the denomi-

nator (the denominator is positive by hypothesis) or if

e(X 2- xI1)T<C
c2e <c

Rearranging terms and using Lemma 1, this is equivalent to
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T < y2_- inc
A2-N1 c2

the third hypothesis. Thus, x is nonnegative.

As in the proof of Theorem 5.4.1, E(k ) convex in x implies^1

that if x > W - T, then the optimal feasible value of E(k1) occurs

at x - W - T.

Theorem 5.4.3. Under the hypothesis of Theorem 5.4.2 with

C
(3') T > 1 -

2-1 c2

the optimal replace-repair policy is to always replace.

Proof: If

I cI 1 x2In - < T < in
2- 1  c2  2-X1

then E(kI) is convex in x by the proof of Theorem 5.2. The value

of x that minimizes E(kI) is still

(X 2 -x1)T

c 22-C2 X 1e
I212-Cl1

By the above assumption,
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1 1l 1 2

In C < T < I In-
X2-x c 2  X2-xi X1

which implies by Lemma 1

in < < n _2
C2 2  1X1

Exponentiating each term

c1  C 2 -A 1 )T X2

c 2 < e <

clX I < c2Xle ( 2-)T< 2c2

Subtracting c2X2  and multiplying by minus one,

(X2 -X1 )T
. 2 2 -Cl1 I  c2A2 - C2Xe >0 .

Finally, dividing through by c2A2 - clX I  and taking the logarithm

(X2 -X 1 )T
. c 2A,2-c2A 1e

In c2X2C2X1e _ < 0.
in c2X2  1 1

This implies x < 0 (from the formula for i) which in turn implies the

optimal feasible value occurs at x 0 0, due to the convexity of E(kl).
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However, Lemma 3 states that if

1 c
T > In-

A2-x1  c2

then the always-replace policy is superior to the x = 0 policy. Thus,

if

1__ c 1  11 l_ X2

In- < T < In -
x2-1 c2 x21 1I

the optimal replace-repair policy is to always replace.

If

T 1 In -2 then,
2-x1 x1

3(E(kl) -xIx (X (X2-xI )T 1
ax c2X2 - c1X1  + c2e 2Xe(- 2)

is greater than or equal to zero for all x. Thus, the minimum feasible

cost occurs at the minimum value of x or, at x = 0. By Lemma 2 and

Lemma 3 once again, the always-replace police is superior to the x - 0

policy.

Hence, combining the two cases, if

1 cl

T > In -x 2-xI  c 2

then always-replace is optimal.
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Figure 5.4.4 is a plot of x vs T. By use of appropriate

scaling V f 1 and cI = 1. This simplifies the equation for x to

22-e(A2-1)T

x = ln[ c22_1 ]
By assigning c2 a reasonable value, 0.6 for instance, x can be

plotted as a function of X2 and T. In this figure X2  takes on three

values 0.55, 2.0 and 3.0.

Figure 5.4.5 is a graph of the same values but with the s notation.

Recall that in the s notation whenever an item fails under warranty it is

replaced if the remaining warranty length is greater than s and repaired

otherwise.
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FIGURE 5.4.5
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CHAPTER 6

OPTIMAL REPAIR POLICIES

In the previous chapter replace-repair policies were discussed

and analyzed in detail. In particular, the optimal replace-repair

policy was derived for various warranties under the assumption of ex-

ponential life lengths. A natural question that arises from this

analysis is: "When is a replace-repair policy optimal?" The answer is

not a simple one, even when it is limited strictly to the standard

warranty, due to the intricacies of the many different possible life

length distributions.

Throughout this chapter it will be assumed that when an item

under warranty fails, the manufacturer has two options: replace the

item with a new item at a cost cl, or repair the item at a reduced

cost c2 < c 1. * It will also be assumed that the warranty policy is

the standard warranty (as defined in Chapter 2). Optimal policies will

be derived by the use of continuous dynamic programming techniques.

Whenever an item under warranty fails the manufacturer is faced

with the decision of whether to repair or replace the item. If the

cost of repairing is greater than the cost of replacing, the manufacturer

will usually choose to replace. If not, the manufacturer must make some

estimate of the trade-offs that exist between the cheaper cost of re-

pairing and the possibly larger probability of failure during the

In general one might also with to assume that the repaired item is
degraded in the sense that U2 , the expected life of the repaired item,
is less than u1 , the expected life of a new item. However, this
assumption is not necessary for the results that follow.
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remaining warranty period. (If the failure distribution of the repaired

item is stochastically less than that of a new item for the remaining

period of the warranty, then clearly the manufacturer should repair

instead of replace.)

Whenever the remaining warranty length is small (for instance, no

remaining warranty) and c2 < c1, the manufacturer should repair. Using

the notation of Chapter 5 let FI(.) represent the failure distribution

of a new or replaced item, F2 (.) the failure distribution of a repaired

item and s the amount of time before the end of the warranty that one

repairs instead of replacing.

Theorem 6.1. If c2 < c1 and F1 (0) - F2 (0) = 0, then there exists a

replace-repair policy with nonzero s that is at least as good as the

replace-only policy in the sense of minimizing expected cost.

Proof. Let M1 (t) and M 2 (t) be the renewal functions associated

with F (t) and F2 (t) respectively. M1 (t) and M2(t) are thus

bounded and nondecreasing in t. Also, by the bounded convergence

theorem Ml(t) and M2 (t) are right continuous. Hence, for all

c > 0 there exists a 6 > 0 such that

It - 01 < 6 implies IM2(t) - M2 (O)I < C

In particular, if c - (c1 - c2)/c2  (greater than zero by

hypothesis) then there exists a 6
0  such that
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cp-c

t < 6 implies c(t) < 12

0 M2()< c2

If a failure occurs during the interval (W - 60,W] then the total

expected cost of the replace-only policy is

cI + cIM 1(t)

where t is the remaining time in the warranty. Likewise, the total

expected cost of a repair-only policy is c2 + c2H2 (t).

Recalling that t < 60

+ c 2 M2 (t) < c 2 + c 2 (c 1 -C2 )

~C

< + c 1 (t) • 

Thus, if a failure occurs during the interval (W - 60 ,W] it is

better to repair than it is to replace and by the nature of the total

expected cost calculation, the replace-repair policy with s 60 is

at least as good as the replace-only policy. 0

The reason for equality in the above theorem is that under

certain F1(.) failure distributions it would be impossible to have a

failure during the interval (W - 60,W). For instance, if F1 (.) were

degenerate at point 2W then no failures would ever occur during the
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warranty period and the total expected cost to the manufacturer would

be c1  for any repair policy.

Now that it has been shown that the replace-repair policy is at

least as good as a replace-only policy, the next question is: when is

a replace-repair policy not optimal? The following example reveals some

of the difficulties in this problem. It should be noted that the diffi-

culties are not simply a result of the degenerate distribution. In fact,

if the distribution were "smoothed" just enough to remove the degeneracies

a similar optimal policy would still occur.

Example 6.1. A Replace-Repair-Replace-Repair Optimal Policy

Let F2 (.) be such that the probability of failure at time 3 is

1/2 and the probability of failure at time 6 is also 1/2, as depicted

below.

F2 (t) 1/21j

0 F
3 6 t

Figure 6.1. F2 (t) for Example 6.1

The expected life length of a repaired item is thus

U2 (6 + 3)/2 - 4.5

Let F1 (.) be exponential with parameter V - 10. Let c1 - 1,

=8/9 and W 7.
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Using the techniques of continuous dynamic programming (that is,

working backwards), one can see that if a failure occurs during the

interval (4,7] then the total expected cost of replacement is at least

1 and the total cost of repair (not expected total cost since no failure

can occur for at least 3 time units) is 8/9.

During the interval (1,4] the total expected cost of repairing

is

- 8 1 1 8 12
8+ 1(0) + !(8) = 12 - 1.33

The total expected cost of replacing is

1 + + f ffi 1 + + (.26) - 1.23 +0 9 0 910 "

Thus, during the interval

(1,2.97] it is cheaper to repair,

(2.97,4] it is cheaper to replace,

(4,7] it is cheaper to repair

During the interval (0,11 the total expected cost to repair is at least

8 1 8 19+ 2 (  +.1 (1.23) - 1.95

while the total cost to replace is at most
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1 +-T - 1.7
10

Thus, the optimal policy is as depicted in Figure 6.2.

replace repair replace repair

0 1 2 3 4 5 6 7

Figure 6.2. Optimal Policy for Example 6.1

A point of interest in this example is that not only is c1 > C2

(requiring that an optimal repair policy end in repairs as per Theorem

6.1) but 2 is also less than pi"

One should also note that the equation to solve for the optimal

policy is

* t *

V (t) = min c 0i + c cj(t-x) + V (t - x) dFi(x),1-i1,2 0

where J (x) e {1,2} is the optimal policy determined by the above

minimum cost calculation and V (.) is the expected cost of that policy.

In the example

2 0<x<3

* 1 3< x< 4.03

2 4.03<x<6

1 6<x<7
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At time zero, j (0) is always equal to 2 since c2 < c1  and by

Theorem 6.1 there always exists a 6 > 0 such that j (x) - 2 for all

x E [0,6). Hence, the first "switchover point", or point at which the

policy changes, is when the two equations

t
c1 + f c2 + c2M2 (t - x) dFl(X) (1)

0

and

t
c 2 + f c 2 + c2M2 (t - x) dF2 (x) (2)

0

= c 2 (l + M2 (t))

cross over.

In the example given these two equations happen to cross not

only once but three times in the interval [0,7). The three values of

t at which these crossings occur are s = 3, 4.01 and 6. These

correspond to the points 4, 2.99 and 1 respectively in Figure 6.2

Although any subsequent crossings of the two equations do not

necessarily reflect switching points, it may still be useful for the

manufacturer to know when there exists a unique point s during the

warranty period W where the difference of the two equations switches

signs. The following two theorems explore conditions under which this

* is true.

It is a bit of a coincidence that the equation crossings at 4.01 and
6 correspond almost exactly to the switching times of 7-4.01 a 2.99

and 7-6 - 1. However, as discussed in the text, it is no coincidence
that the point 7-3 - 4 corresponds to a switching time.
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Theorem 6.2. If cI > c2  and

dFl(x) < dF2 (x) Vx e [0,W]

then the two equations

t
, I + f c2 + c2M 2 (t - x) dF (x) (1)

0

and

t

c2 + f c2 + c2M 2 (t - x) dF2 (x) (2)
0

cross at most once in the interval [0,W]

Proof. Consider the difference, (2) minus (1)

t
c2 - cI + f c2 (1 + M2 (t - x))[dF 2 (x) - dF(X)]0

At time t = 0 this difference is negative since cI > c2. If

dF2 (x) > dFl(X) for all x E [0,W] then

d 

d c2(U + M2 (t - x))[dF2(x) - dFl(x)]
0

C 2 dF 2(t) - dF 1(0)I

+ f ~M (t - x)P[dF(x W dF 1)
0

>-0



since M 2 (t) is increasing in t. Thus, there is at most one point

s E [O,W] where the above difference can be equal to zero and, hence,

Theorem 6.2 is proved.

The above theorem is probably not very useful for large W due

to the restriction that

dF(x) > dF1 (x) Vx E [0,W]

Note that this condition cannot hold for all x because

f dF2 (x) = f dF1 (x) = 1
0 0

Another interesting and perhaps more useful theorem can be

proved if one assumes that F 2(-) is an exponential distribution.

The method of proof will be the same as was used in Theorem 6.2,

that is, proving the difference is increasing at t.

Theorem 6.3. If c1 > c2, F2 (-) is an exponential distribution

and FI(.) has a decreasing failure rate (DFR) distribution with

density f1 (.), then the two equations (1) and (2) of Theorem 6.2

cross at most once.

Proof. If F2(-) is distributed exponentially with parameter X2

then
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M 2 (t - x) - 2 (t - x)

Equation (2) minus Equation (1) thus simplifies to

t
c 2 - c1 + f c2 + c 2 A2 (t - x)[dFl(x) - dF2 (x)]

0

C2 - C1 + c2(F2 (t) - F(t)] + c2A2 t[F 2 (t) - F (t)]

t t
- f c2x2 xdF 2 (x) + f c2x 2 xdFl(x)

0 0

Notice that at t = 0 the above equation is c2 - Cl, less than zero

by hypothesis.

To find if this equation is increasing in t one can take the

partial derivative with respect to t and see if it is positive.

Recalling the assumption that FI(.) has a density,

t[(2) -(1)] =c 2 [f 2(t ) - fl(t)] + c2 A2 t[f 2(t) f fl(t0]

+ c2 2 [F2 (t) - Fl(t) ] - c2 2 tf2 (t)

+ c2 2tf1 (t)

2 -2t
c2 x2e + c2A2 - c2 '2e - c2 fI(t) - c2 x2 Fl(t)

- c2X2Fl(t) - C fl(t)

Thus, the partial with respect to t of the difference of (2) and

(1) is greater than or equal to zero iff
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c2 X2FI(t) - c2f(t) W > 0

iff

2 fl(t)

F( is DFR by hypothesis and, hence, f1 (t)/Fl(t) is decreasing in

t. There are three cases to consider:

a) fl(t) > X for all t

fl(t)

b) < X for all t
F1(t) 2

c) fI(O) > and for all > tO f 1( ) <

In case a) the partial with respect to t of equation (2) minus

equation (1) is never positive and, hence, no crossing point exists

(except in the case of strict equality). In case b) the difference

in strictly increasing and, hence, exactly one change of sign occurs.

In case c) the difference is at first decreasing and then after

a certain time (say t0 ) strictly increasing in t. Thus, there exists

a unique point s where the two equations (1) and (2) cross.

Using the results of the two previous theorems along with Theorem

5.2 (and its proof) conditions which insure a replace-repair policy is
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optimal can be derived. It is important to remember that if no

cross over point (as defined in the previous two theorems) exists,

then the optimal policy is the repair-only policy, a degenerate

subset of the repair-replace policies. For the following theorems it

will be assumed that a cross over point, or switching time, exists,

is within the warranty period W, and occurs s units tef time from

the end of the warranty.

Theorem 6.4. If c1 > c2 and

dFl(x) < dF2 (x) vx E [0,w]

then a replace-repair policy is optimal.

Proof. By Theorem 6.2 the optimal policy ends in a replace-repair type

policy. If it can be shown that a policy of the form repair-replace-

repair is always more expensive than a replace-replace-repair (equivalent

to replace-repair) policy then the theorem will be proved.

Consider the two policies depicted below.

2

0 t t+s

Figure 6.3. A Replace-Repair-Replace Policy (A)

1



1r

0--0
0 t t+s

Figure 6.4. A Replace-Repair Policy (B)

In Policy A (Figure 6.3) one repairs if there is s + t time units

left in the warranty, replaces if there is less than t + s and greater

than or equal to s time units left, and repairs if there is less than

a units left. Policy B (Figure 6.4) is identical except that replace-

ment occurs at time t + s.

Using the notation of Example 6.1, the total expected cost of

Policy A is

t+s
c2 + f V(t + s - x)dF 2(x)

0

and the total expected cost of Policy B is

t+s
c 1 + f V(t + S - x)dF(x)

0

Taking the difference (A - B) and then differentiating with respect to

t yields

(A - BI = V(O)(dF2 (t + a) - dF (t + s))
at2

+ f [i--. V(t + a - x)][dF2 (x) - dFW(x)]
0
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which is strictly increasing since dF2 (x) > dFl(X).

For t - 0 Policy A has a cost that is at least that of Policy B

by definition of s. By the proof of Theorem 6.2 for some sufficiently

small positive t Policy A is more costly than Policy B. By the above

result the difference in cost between Policy A and Policy B is strictly

increasing in t. Thus, Policy A can never be better than Policy B

and, hence, a replace-repair policy is optimal. 91

A similar proof will be used in the following related theorem.

Theorem 6.5. If cI > c2, F2(.) is an exponential distribution and

FI(.) is DFR with density fl( -) then a replace-repair policy is

optimal.

Proof. By Theorem 6.3 the optimal policy ends in a replace-repair type

policy. By the proof of Theorem 5.2

TaItt+s = c2X2  for Policy A (Figure 6.3)

For Policy B (by hypothesis FI(-) has a density f (.)) 1i

V(t)f t+s-a V(t + s - x)f (x)dx
t+s t0

at+

- V(O)f(t+s) +t+T V(t + s - x)f (x)dx
0
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V(O)f (t + s) + f t V(t + s - x)fl(X)dx
0

t+s -V(t + s - )f (x)dx.
t at

By hypothesis cI > c2. Thus, by Theorem 6.1 V(0) c2 . By the

definition of s and the hypothesis that F2 (.) is exponential

V(x) - c2 A 2x yx E [O,s)

Hence, for Policy B

mt- C 2 f (t + 8) + f t- V(t + s - x)fW(x)
t+s 0

+ c 2 A2 (FI(s + t) - F1(t))

V(x) is continuous since both FI(.) and F2 (.) have densities.

At time s

" ~~V(x) I<c1
< C

*ax is 22

and, in fact, if it is optimal to replace at some point x0 > a, then
0

2; 1 26 c
,, x 0X

I'. -126-



This can be seen either by a recursion argument on the derivative

(identical to the rest of this proof) or by noting that if

V(x) > c x

x >8x0>

then by the continuity of V(x) and Theorem 5.2 it would be cheaper

to repair at time x0  (a contradiction).

Using this bound

3Vt c2f (t + T) + ft 3 V(t + s - x)f(X)dx

s+t 0

+ c2x2 (F1 (s + t) - F (t))

t
c2f1 (t + s) + f c2X2 f1 (x)dx

0

+ c2 x2 (F1(s + t) - F (t))

C 2 f1 (t + s) + c2A 2 F 1 (s + t)

By the results of Theorem 6.3, the definition of s and the assumption

that FI(.) is DFR,

f (t+s)

Fl(s+t) 2 or,

f1 (t+s) < x- 2 x2 F 1 (s + t)
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. ...............

Substituting in (for Policy B)

V(t) < c2 2  c22F(a + t) + X2F (S + t)
at 2F2 1

Thus, the difference in cost between Policy A and Policy B is

strictly increasing in t, and by the same argument used in Theorem 6.4

a replace-repair policy is optimal. 0

Using the above results the optimality of the exponential

examples of Section 5.2 can be proved.

Lemma 6.6. If FI(.) and F2(.) are both distributed exponentially

with parameters X1 and X 2 and costs cI and c2 respectively with

c1 > c2 and X1 < X 2 then the optimal policy is a replace-repair policy.

Proof. Exponential distributions are subsets of DFR distributions. Thus,

Theorem 6.5 applies. If A1 < A then condition b) of Theorem 6.3

applies, exactly one switching point exists, and a replace-repair policy

with nonzero s is optimal. "

Using the results of this chapter an alternate method for finding

s in the exponential example can be used.
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Example 6.2. If F1  and F2  are exponential distributions, then the

first and only switching time occurs at the first (and only) zero crossing

of

tc2 I + f c2 (1 + M2 (t - x))[dF 2(x) - dFf(x)]

0

t [-2x -AlX
=c 2 - c1 + f c2 (l + X2 (t - x))A 2 e - X1e Jdx

0

C2- c 1 + c 2 X2 t - c 2 (1 -Xlt) - c2X2t( - e-Xlt)

t -X

+ f c2I2 xAle dx
0

-XAt -Xlt
2 X2u I - cI + c2e - c2X2 "le

Solving for the point s where this quantity equals zero

-A s
c - c 2c 2 - c2A2'le

or

r Cl- 1

I ln C2.c0

1 L c2pl1-c2P2

the same value derived in Section 5.2.

Two concluding notes on optimal repair policies seem appropriate

here. First of all, as was stated in Chapter 5, limiting the analysis
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to the standard warranty does not exclude (W,T) warranty policies.

The statements and theorems of Chapter 6 (with the obvious exception

of Theorem 6.1) are also applicable to (W,T) policies.

Secondly, if the manufacturer has multiple options (i.e., FI(.),

F 2 , Fn(.)) that are all distributed exponentially, then the

results of Chapters 5 and 6 can be used to show that an optimal repair

policy has the form

0 W

where ciXi > cX X > cX >c ... The proof is not included here

because an excellent proof (albeit very different in both approach and

technique) can be found in [10].
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

The major results of this paper fit into three catagories:

defining warranty policies, mathematical analysis of these policies,

and consideration of the manufacturer's option of repairing an item

in lieu of replacing it. Six different warranty policies were defined

and analyzed. The standard warranty, the renewing warranty and the

pro rata warranty are all common policies found nation wide. The pro

rata with rebate and pro rata with delay warranty policies (see Chapter

3) are beginning to become popular and have appeared in recent literature

[4, 5, 13]. The (W,T) warranty policy is new and has not appeared in

any published literature (to this author's knowledge). However, it is

currently being used by such major companies as Texas Instruments.

Each of the above policies was analyzed from both the manufacturer's

point of view (profit per customer per unit time) and from the consumer' s

point of view (cost per unit time) over both finite and infinite time

horizons. This analysis was performed primarily by the use of renewal

equations.

When the manufacturer is faced with the option of repairing or

replacing an item under warranty the question of optimal repair policies

arises. One repair policy, the replace-repair policy (replace if there

is greater than s time units left in the warranty and repair otherwise),

was shown to be optimal whenever the repaired item had an exponential

life length distribution and the replaced or new item had a DFR distri-

bution.
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There are many areas for future research. From the econometric

side one could assume consumer demand as a function of both price and

warranty to arrive at the optimal warranty that should be offered.

Or, discounting could be considered by folding the discount rate into

the failure distribution to arrive at a terminating renewal process

(Feller [II] calls the analysis of this process "trite"). From the

sociologic point of view the percent of eligible consumers who actually

use their warranties could be included in the analysis of Chapters 3

and 4.

An intriguing question to those interested in reliability is

what other conditions can be derived which insure a replace-repair

policy is optimal. For instance, it might be conjectured, due to the

symmetry that frequently exists in these processes, that if the replaced

item had an exponential life length distribution and the repaired item

an IFR distribution, then the optimal repair policy would also be a

replace-repair policy.
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